New tool helps cities to plan electric bus routes, and calculate the benefits

January 9, 2017, KTH Royal Institute of Technology
A new tool can be used by any city's bus system to calculate the costs and benefits of expanding electric bus routes. Credit: KTH Royal Institute of Technology

The recent rollout of Sweden's first wireless charging buses was accompanied by a tool for cities to determine the environmental and financial benefits of introducing their own electrified bus networks.

The bus system analysis was presented during ceremonies marking the debut of wireless charging buses in Stockholm – the first in all of Scandinavia. Using the model to propose the optimal locations for installing chargers on Stockholm's bus network, technology researcher Maria Xylia at KTH Royal Institute of Technology reported that the fleet could halve CO2 emissions while lowering by 34 percent if the city installed 150 chargers to electrify 94 bus routes.

The 40 percent savings in fuel costs would balance out the projected costs of investments in infrastructure such as chargers and connection to the grid, says Xylia, who developed the model in cooperation with the International Institute for Applied System Analysis (IIASA). Xylia, a researcher at the Energy and Climate Studies Unit and Integrated Transport Research Lab at KTH, developed the model as part of her stay at the Young Scientists Summer Program of 2016 at IIASA with a grant sponsored by the Swedish Research Council, Formas.

While that forecast is based on optimized energy usage, the model also offers users the option of cost optimization. In Stockholm's case, a cost-optimized scenario would mean fewer electrified bus lines, but lower energy consumption nevertheless – albeit with a slightly less extensive estimate of 40 percent reduction in emissions.

A new tool can be used by any city's bus system to calculate the costs and benefits of expanding electric bus routes. Credit: KTH Royal Institute of Technology

Xylia says that the model allows for multiple bus charging technologies and even takes into account potentially rising electricity costs in the estimates. "But as long as electricity prices remain in this range, the infrastructure cost would balance the fuel savings."

However, in order to gain the maximum environmental benefits of electrification, the electricity needs to come from renewable sources, she says. "If you look at the energy mix throughout the EU, you will see a difference – it's a totally different story from Sweden. You have to have green energy in order to maximize environmental benefit."

The model can be applied to any city as a basis for decision-making, Xylia says.

"As long as you have a detailed map of the bus network and a reliable bus schedule, then you can do this for any city," she says. "London is much bigger than Stockholm, but if they have this data, then we can generate optimized energy and cost scenarios for that system."

A map of bus lines in Stockholm showing where electrical lines with wireless charging would be possible. The red lines represent biodiesel, blue lines represent electrical / conductive charging and orange lines electric / inductive charging. Credit: KTH Royal Institute of Technology

A complete dissemination of the model will be published at a later date.

The project is connected with IIASA's work on energy system optimization methodologies that can be used on the local, regional and national scale, says one of Xylia's supervisors on the project, Florian Kraxner, deputy director of IIASA's Ecosystems Services and Management Program.

One such model is IIASA's BeWhere, which is the basis for the bus electrification analysis tool. Kraxner says that adapting the BeWhere model to transport is a step towards making cities energy efficient and reducing their carbon footprint.

"Cities and urban areas will soon become the major driver for energy demand globally," says IIASA researcher Sylvain Leduc, who served as Xylia's co-supervisor. "Many cities are still using a combination of different kinds of buses and tramways. These combined road and rail urban grids can be assessed an optimized in an integrated way."

Explore further: Production to consumption energy efficiency for smart cities

Related Stories

Clean energy could stress global water resources

March 3, 2016

Climate mitigation efforts in the energy system could lead to increasing pressure on water resources, according to a new study published in the journal Environmental Research Letters. Yet increased energy efficiency and a ...

TOSA buses power up for less

June 16, 2014

EPFL scientists have developed a mathematical model to minimize the infrastructure and operational costs of the TOSA ultra-rapid rechargeable electric bus system.

Research shows greater potential for solar power

June 22, 2014

Concentrating solar power (CSP) could supply a large fraction of the power supply in a decarbonized energy system, shows a new study of the technology and its potential practical application.

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.