Random access memory on a low energy diet: Researchers develop basis for a novel memory chip

January 3, 2017
The prototype of an antiferromagnetic magnetoelectric memory chip, which was invented by researchers from Dresden and Basel. It consists of a thin layer of chromium oxide (Cr2O3) for saving data, on top of which the physicists attached a nanometer-thin platinum layer for read out. Credit: T. Kosub/HZDR

Memory chips are among the most basic components in computers. The random access memory is where processors temporarily store their data, which is a crucial function. Researchers from Dresden and Basel have now managed to lay the foundation for a new memory chip concept. It has the potential to use considerably less energy than the chips produced to date - this is important not only for mobile applications but also for big data computing centers. The results are presented in the latest volume of the scientific journal Nature Communications.

The purely electrical memory chips that are commonly used today have a significant disadvantage: "This memory is volatile and its state must be continuously refreshed," says Dr. Tobias Kosub, first author of the study and post-doctoral researcher at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). "This requires quite a lot of energy." The consequences can be seen, for example, at large computing centers. On the one hand, their electricity bills rise with increased computing power. On the other hand, the chips increasingly heat up based on their energy consumption. The data centers are finding it increasingly difficult to dissipate this heat. Some Cloud operators go as far as to set up their server farms in cold regions.

There is an alternative to these electrical memory chips. MRAMs save data magnetically and therefore do not require constant refreshing. They do, however, require relatively large electrical currents to write the data to memory, which reduces reliability: "They threaten to wear out too quickly and break down if disruptions occur during the writing or reading process," Kosub says.

Electrical voltage instead of current

The scientific world has therefore been working on MRAM alternatives for quite a while. One material class called "magnetoelectric antiferromagnets" appears particularly promising. These magnets are activated by an rather than by a current. "These materials cannot be easily controlled," explains HZDR group leader Dr. Denys Makarov. "It is difficult to write data to them and read them out again." So far it has been assumed that these magnetoelectric antiferromagnets can only be read indirectly via ferromagnets, which, however, negates many of the advantages. The goal is therefore to produce a purely antiferromagnetic magnetoelectric memory (AF-MERAM).

This is precisely what the research teams from Dresden and Basel have now managed to do. They developed a novel AF-MERAM prototype based on a thin layer of chromium oxide. This is inserted - like a sandwich filling - between two nanometer-thin electrodes. If a voltage is applied to these electrodes, the chromium oxide "flips" into a different magnetic state - and the bit is written. The key is that a few volts are sufficient. "In contrast to other concepts, we could reduce the voltage by a factor of fifty," says Kosub. "This allows us to write a bit without excessive energy consumption and heating." A particular challenge was the ability to read out the written bit again.

In order to do so, the physicists attached a nanometer-thin platinum layer on top of the chromium oxide. The platinum enables the readout through a special electrical phenomenon - the Anomalous Hall Effect. The actual signal is very small and is superimposed by interference signals. "We could, however, develop a method that suppressed the storm of interference, allowing us to obtain the useful signal," Makarov describes. "This was, in fact, the breakthrough." The results look very promising according to Prof. Oliver G. Schmidt of the Leibniz Institute for Solid State and Materials Research Dresden, which also participated in the study: "It will be exciting to pursue how this new approach will position itself with regard to established silicium-technology." Now the researchers are about to develop the concept further.

"The material is thus far working at room temperature, but only within a narrow window," says Kosub. "We want to considerably expand the range by selectively altering the chromium oxide." To achieve this, the colleagues from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have made an important contribution. Their new investigation method provides images of the magnetic properties of the for the first time with nanoscale resolution. The experts now aim to integrate several memory elements on a single chip. So far, only a single element was realized, which can store merely one bit. The next step, a crucial one towards possible applications, is to construct an array of several elements. "In principle, such could be produced using standard methods employed by computer manufacturers," says Makarov. "This is one of the reasons the industry has shown great interest in such components."

Explore further: Resistive random-access memory that avoids an initial forming process improves fabrication methods and reliability

More information: Tobias Kosub et al, Purely antiferromagnetic magnetoelectric random access memory, Nature Communications (2017). DOI: 10.1038/NCOMMS13985

Related Stories

Engineers develop new magnetoelectric computer memory

December 14, 2012

(Phys.org)—By using electric voltage instead of a flowing electric current, researchers from UCLA's Henry Samueli School of Engineering and Applied Science have made major improvements to an ultra-fast, high-capacity class ...

New silicon memory chip developed

May 18, 2012

(Phys.org) -- The first purely silicon oxide-based 'Resistive RAM' memory chip that can operate in ambient conditions – opening up the possibility of new super-fast memory - has been developed by researchers at UCL.

Scientists develop brain-inspired memory material

July 8, 2016

Our brain does not work like a typical computer memory storing just ones and zeroes: thanks to a much larger variation in memory states, it can calculate faster consuming less energy. Scientists of the MESA+ Institute for ...

Recommended for you


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jan 04, 2017
A tremendous achievement for which we will see no real-world applications or products.
not rated yet Jan 05, 2017
MeRAM is already in the market since 2015, with buyers and revenues;
It is in variety of product invisible to users, eg:

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.