
 

Modifying the 'middle end' of a popular
compiler yields more-efficient parallel
programs
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“Everybody said it was going to be too hard, that you’d have to change the whole
compiler,” MIT professor Charles E. Leiserson says. “And these guys basically
showed that conventional wisdom to be flat-out wrong.” Credit: Massachusetts
Institute of Technology
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Compilers are programs that convert computer code written in high-level
languages intelligible to humans into low-level instructions executable by
machines.

But there's more than one way to implement a given computation, and
modern compilers extensively analyze the code they process, trying to
deduce the implementations that will maximize the efficiency of the
resulting software.

Code explicitly written to take advantage of parallel computing,
however, usually loses the benefit of compilers' optimization strategies.
That's because managing parallel execution requires a lot of extra code,
and existing compilers add it before the optimizations occur. The
optimizers aren't sure how to interpret the new code, so they don't try to
improve its performance.

At the Association for Computing Machinery's Symposium on Principles
and Practice of Parallel Programming next week, researchers from
MIT's Computer Science and Artificial Intelligence Laboratory will
present a new variation on a popular open-source compiler that
optimizes before adding the code necessary for parallel execution.

As a consequence, says Charles E. Leiserson, the Edwin Sibley Webster
Professor in Electrical Engineering and Computer Science at MIT and a
coauthor on the new paper, the compiler "now optimizes parallel code
better than any commercial or open-source compiler, and it also
compiles where some of these other compilers don't."

That improvement comes purely from optimization strategies that were
already part of the compiler the researchers modified, which was
designed to compile conventional, serial programs. The researchers'
approach should also make it much more straightforward to add
optimizations specifically tailored to parallel programs. And that will be
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crucial as computer chips add more and more "cores," or parallel
processing units, in the years ahead.

The idea of optimizing before adding the extra code required by parallel
processing has been around for decades. But "compiler developers were
skeptical that this could be done," Leiserson says.

"Everybody said it was going to be too hard, that you'd have to change
the whole compiler. And these guys," he says, referring to Tao B.
Schardl, a postdoc in Leiserson's group, and William S. Moses, an
undergraduate double major in electrical engineering and computer
science and physics, "basically showed that conventional wisdom to be
flat-out wrong. The big surprise was that this didn't require rewriting the
80-plus compiler passes that do either analysis or optimization. T.B. and
Billy did it by modifying 6,000 lines of a 4-million-line code base."

Schardl, who earned his PhD in electrical engineering and computer
science (EECS) from MIT, with Leiserson as his advisor, before
rejoining Leiserson's group as a postdoc, and Moses, who will graduate
next spring after only three years, with a master's in EECS to boot, share
authorship on the paper with Leiserson.

Forks and joins

A typical compiler has three components: the front end, which is tailored
to a specific programming language; the back end, which is tailored to a
specific chip design; and what computer scientists oxymoronically call
the middle end, which uses an "intermediate representation," compatible
with many different front and back ends, to describe computations. In a
standard, serial compiler, optimization happens in the middle end.

The researchers' chief innovation is an intermediate representation that
employs a so-called fork-join model of parallelism: At various points, a
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program may fork, or branch out into operations that can be performed
in parallel; later, the branches join back together, and the program
executes serially until the next fork.

In the current version of the compiler, the front end is tailored to a fork-
join language called Cilk, pronounced "silk" but spelled with a C
because it extends the C programming language. Cilk was a particularly
congenial choice because it was developed by Leiserson's
group—although its commercial implementation is now owned and
maintained by Intel. But the researchers might just as well have built a
front end tailored to the popular OpenMP or any other fork-join
language.

Cilk adds just two commands to C: "spawn," which initiates a fork, and
"sync," which initiates a join. That makes things easy for programmers
writing in Cilk but a lot harder for Cilk's developers.

With Cilk, as with other fork-join languages, the responsibility of
dividing computations among cores falls to a management program
called a runtime. A program written in Cilk, however, must explicitly tell
the runtime when to check on the progress of computations and
rebalance cores' assignments. To spare programmers from having to
track all those runtime invocations themselves, Cilk, like other fork-join
languages, leaves them to the compiler.

All previous compilers for fork-join languages are adaptations of serial
compilers and add the runtime invocations in the front end, before
translating a program into an intermediate representation, and thus
before optimization. In their paper, the researchers give an example of
what that entails. Seven concise lines of Cilk code, which compute a
specified term in the Fibonacci series, require the compiler to add
another 17 lines of runtime invocations. The middle end, designed for
serial code, has no idea what to make of those extra 17 lines and throws
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up its hands.

The only alternative to adding the runtime invocations in the front end,
however, seemed to be rewriting all the middle-end optimization
algorithms to accommodate the fork-join model. And to
many—including Leiserson, when his group was designing its first Cilk
compilers—that seemed too daunting.

Schardl and Moses's chief insight was that injecting just a little bit of
serialism into the fork-join model would make it much more intelligible
to existing compilers' optimization algorithms. Where Cilk adds two
basic commands to C, the MIT researchers' intermediate representation
adds three to a compiler's middle end: detach, reattach, and sync.

The detach command is essentially the equivalent of Cilk's spawn
command. But reattach commands specify the order in which the results
of parallel tasks must be recombined. That simple adjustment makes
fork-join code look enough like serial code that many of a serial
compiler's optimization algorithms will work on it without modification,
while the rest need only minor alterations.

Indeed, of the new code that Schardl and Moses wrote, more than half
was the addition of runtime invocations, which existing fork-join
compilers add in the front end, anyway. Another 900 lines were required
just to define the new commands, detach, reattach, and sync. Only about
2,000 lines of code were actual modifications of analysis and
optimization algorithms.

Payoff

To test their system, the researchers built two different versions of the
popular open-source compiler LLVM. In one, they left the middle end
alone but modified the front end to add Cilk runtime invocations; in the
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other, they left the front end alone but implemented their fork-join
intermediate representation in the middle end, adding the runtime
invocations only after optimization.

Then they compiled 20 Cilk programs on both. For 17 of the 20
programs, the compiler using the new intermediate representation
yielded more efficient software, with gains of 10 to 25 percent for a
third of them. On the programs where the new compiler yielded less
efficient software, the falloff was less than 2 percent.

"For the last 10 years, all machines have had multicores in them," says
Guy Blelloch, a professor of computer science at Carnegie Mellon
University. "Before that, there was a huge amount of work on
infrastructure for sequential compilers and sequential debuggers and
everything. When multicore hit, the easiest thing to do was just to add
libraries [of reusable blocks of code] on top of existing infrastructure.
The next step was to have the front end of the compiler put the library
calls in for you."

"What Charles and his students have been doing is actually putting it
deep down into the compiler so that the compiler can do optimization on
the things that have to do with parallelism," Blelloch says. "That's a
needed step. It should have been done many years ago. It's not clear at
this point how much benefit you'll gain, but presumably you could do a
lot of optimizations that weren't possible."

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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