Study finds a link between drought and air quality in the western wilderness

January 6, 2017
Colored icons indicate correlations between aridity (left) and fire area burned (right) in colored mountain ranges with aerosol concentrations at wilderness sampling sites. Credit: Gannet Hallar.

Many people head to the mountains in the summer to get above the haze of the cities and valleys. A new study finds that the haze could be catching up.

University of Utah atmospheric scientist Gannet Hallar and colleagues find a correlation between the severity of drought in the Intermountain West and the summertime air quality, particularly the concentration of aerosol particles, in remote mountain wilderness regions. The link between drought and haze is likely wildfire, the researchers write in Environmental Research Letters. Climate projections suggest that drought and wildfire risk will continue to increase in coming decades.

"If you take that into the future, we're going to see significant hazing of the West," Hallar says.

Haze in the air is caused by small airborne particles—typically dust, soot, ash or smoke. Aerosols are particles so small that they are suspended in air and don't settle out. Fog and steam can also be considered aerosols.

Their role in modifying the climate is significant, depending on the composition of the particles. Dust particles made of mineral grains can reflect solar energy, providing a cooling effect. Aerosol particles made of organic carbon, such as soot or smoke, can absorb energy, however, warming the climate. Further, can trigger cloud formation, which exerts its own influence over global temperature and climate. Aerosols are an important component of the atmospheric energy balance.

The video will load shortly.
This video abstract describes the findings of a study linking drought, wildfire, and air quality in the wilderness areas of the American West. Credit: Paul Gabrielsen/University of Utah

Hallar conducts research at Storm Peak Laboratory, a research lab near Steamboat Springs, Colorado, at an elevation of 10,525 feet above sea level. The lab, a part of the Desert Research Institute, measures , the amount of aerosols between the sensor and the sun. Researchers noticed that decades of aerosol optical depth records consistently showed increased in the summer. A previous global study of aerosols had showed that, in general, aerosol concentrations were decreasing across the United States except for a summertime peak at a site in the western U.S. The team, consisting of hydrologists and atmospheric scientists, looked at climate and drought records for the West to see if they could find a connection to the summer mountain haze. They found a correlation between drought and high-elevation aerosols, with a very likely explanation. "It's the fires," Hallar says. Further analysis of summer wildfire area burnt in the West showed a good correlation with aerosol optical depth in the northern, central and southern Rockies.

"It's a strong evidence that the drought is probably allowing for more wildfires and the fires are most likely allowing for more aerosols," Hallar says.

Hallar says that her team's observations allow for comparison with climate models' simulated effects of fires on . The models use assumptions to estimate how much aerosol pollution results from an area of forest burned, which can lead to uncertainties in the conclusions. "We're putting a moment of real data in there," Hallar says, and notes that their observational data isn't far off from what the models predict. "That has me concerned because climate models are predicting in the future a significant increase in organic loading."

Even more concerning is that Hallar's data came from wilderness areas—those preserved for their untouched natural beauty. A wilderness area's borders, however, can't keep the haze out. Hallar hopes that her results highlight the importance of managing the relationship between , fire and haze in the West. "We need to think about fires in the realm of air quality," she says.

Idaho's Sawtooth Wilderness, with a simulated view of hazy conditions on the right. Credit: University of Utah

Explore further: Climate models may be overestimating the cooling effect of wildfire aerosols

More information: A Gannet Hallar et al, Impacts of increasing aridity and wildfires on aerosol loading in the intermountain Western US, Environmental Research Letters (2017). DOI: 10.1088/1748-9326/aa510a

Related Stories

Anthropogenic aerosols increasing over India

November 5, 2013

Aerosol particles in the Earth's atmosphere scatter and absorb light differently at different wavelengths, thereby affecting the amount of incoming sunlight that reaches the planet's surface and the amount of heat that escapes, ...

Well-traveled atmospheric particles, put to the test

August 3, 2016

How do you test a model simulator? Compare it to real life. That's what scientists at Pacific Northwest National Laboratory did when they compared several observational sets with a simulation of how tiny atmospheric particles ...

Atmospheric aerosols can significantly cool down climate

May 19, 2016

It is possible to significantly slow down and even temporarily stop the progression of global warming by increasing the atmospheric aerosol concentration, shows a new study from the University of Eastern Finland. However, ...

Recommended for you

New magma pathways after giant lateral volcano collapses

October 23, 2017

Giant lateral collapses are huge landslides occurring at the flanks of a volcano. Giant lateral collapses are rather common events during the evolution of a large volcanic edifice, often with dramatic consequences such as ...

Scientists warn that saline lakes in dire situation worldwide

October 23, 2017

Saline lakes around the world are shrinking in size at alarming rates. But what—or who—is to blame? Lakes like Utah's Great Salt Lake, Asia's Aral Sea, the Dead Sea in Jordan and Israel, China's huge Lop Nur and Bolivia's ...

Mountain glaciers shrinking across the West

October 22, 2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.