Computer cluster will calculate gravitational waves faster than the institute's previous supercomputer

January 25, 2017 by Dr. Benjamin Knispel, Max Planck Society
The new supercomputer “Minerva” of the “Astrophysical and Cosmological Relativity” Divsion at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Potsdam-Golm. Credit: A. Okulla/Max Planck Institute for Gravitational Physics

The new supercomputer "Minerva" has been put into operation at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI). With 9,504 compute cores, 38 TeraByte memory and a peak performance of 302.4 TeraFlop/s it is more than six times as powerful as its predecessor. The scientists of the department "Astrophysical and Cosmological Relativity" can now compute significantly more gravitational waveforms and also carry out more complex simulations.

Above all, the new computer cluster – named after the Roman goddess of wisdom – is used for the calculation of gravitational waveforms. These ripples in space time – measured for the first time directly in September 2015 – originate when massive objects such as black holes and merge. Obtaining the exact forms of the emitted requires numerically solving Einstein's complicated, non-linear field equations on supercomputers like Minerva. The AEI has been at the forefront of this field for many years and its researchers have been making important contributions to the software tools of the trade.

Tracking down faint signals in the detectors' background noise and inferring information about astrophysical and cosmological properties of their sources requires calculating the mergers of many different binary systems such as or pairs of a neutron star and a black hole, with different combinations of mass ratios and individual spins.

"Such calculations need a lot of compute power and are very time-consuming. The simulation of the first gravitational wave measured by LIGO lasted three weeks – on our previous supercomputer Datura," says AEI director Professor Alessandra Buonanno. "Minerva is significantly faster and so we can now react even quicker to new detections and can calculate more signals."

Numerical simulation of the gravitational-wave event GW151226 associated to a binary black-hole coalescence. The strength of the gravitational wave is indicated by elevation as well as color, with cyan indicating weak fields and orange indicating strong fields. The sizes of the black holes as well as the distance between the two objects is increased by a factor of two to improve visibility. The colors on the black holes represent their local deformation due to their intrinsic rotation (spin) and tides. Credit: Numerical-relativistic Simulation: S. Ossokine , A. Buonanno (Max Planck Institute for Gravitational Physics) and the Simulating eXtreme Spacetime project; scientific visualization: T. Dietrich, R. Haas (Max Planck Institute for Gravitational Physics)

Ready for the gravitational wave detectors' second science run

The gravitational wave detectors Advanced LIGO in the USA (aLIGO) and GEO600 in Ruthe near Hanover started their second observational run ("O2") on 30 November 2016. aLIGO is now more sensitive than ever before: The detectors will be able to detect signals from about 20% further away compared to O1, which increases the event rate by more than 70%.

Researchers in the Astrophysical and Cosmological Relativity division at AEI have improved the capabilities of aLIGO detectors to observe and estimate parameters of gravitational-wave sources ahead of O2. For the search for binary black hole mergers, they have refined their waveform models using a synergy between numerical and analytical solutions of Einstein's equations of general relativity. They calibrated approximate analytical solutions (which can be computed almost instantly) with precise numerical solutions (which take very long even on powerful computers).

This allows the AEI researchers to use the available computing power more effectively and to search more quickly and discover more potential signals from merging in O2, and to determine the nature of their sources. AEI researchers also have prepared simulations of merging neutron star and boson star binaries. These can be simultaneously observed in electromagnetic and gravitational radiation, and can provide new precise tests of Einstein's theory of general relativity.

Explore further: LIGO expected to detect more binary black hole mergers

Related Stories

LIGO expected to detect more binary black hole mergers

January 9, 2017

The Laser Interferometer Gravitational-wave Observatory (LIGO) broke the news almost one year ago about the first-ever direct observation of gravitational waves. Now, LIGO scientists hope that this year could yield even more ...

Gravitational waves found, black-hole models led the way

February 11, 2016

Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. The advanced Laser Interferometric Gravitational-wave ...

Making waves in spacetime

July 22, 2016

Waves on Earth's oceans move in endless rhythm along sandy beaches. Another kind of wave ripples to our planet from distant black holes in the universe.

Recommended for you

Drilling success: Curiosity is collecting Mars rocks

May 23, 2018

Engineers working with NASA's Curiosity Mars rover have been hard at work testing a new way for the rover to drill rocks and extract powder from them. This past weekend, that effort produced the first drilled sample on Mars ...

Rosetta unravels formation of sunrise jets

May 23, 2018

The atmosphere of Rosetta's comet 67P/Churyumov-Gerasimenko is far from homogeneous. In addition to sudden outbursts of gas and dust, daily recurring phenomena at sunrise can be observed. In these, evaporating gas and entrained ...

Astronomers spot a distant and lonely neutron star

May 23, 2018

Astronomers have discovered a special kind of neutron star for the first time outside of the Milky Way galaxy, using data from NASA's Chandra X-ray Observatory and the European Southern Observatory's Very Large Telescope ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.