Scientists examine 'perfect storms' fueling vast tropical biodiversity

December 12, 2016 by Greg Borzo
A paper by Prof. David Jablonski examines factors that determine biodiversity in given regions. Credit: Getty/University of Chicago

Biodiversity on earth is greatest in the tropics with the number and variety of species gradually diminishing toward the poles. Understanding exactly what shapes this pattern, known as the latitudinal diversity gradient, is not just key to knowing the nature of life on Earth, but it also could help scientists slow biodiversity loss and protect areas of the globe that generate a disproportionate variety of species.

David Jablonski, the William R. Kenan, Jr., Distinguished Service Professor of Geophysical Sciences at the University of Chicago, and colleagues at the University of California, Berkeley and University of California, San Diego attempt to reconcile two competing ideas explaining the pattern in a paper published in the December issue of the American Naturalist.

One idea contends that local environmental factors determine the biodiversity of a given region. The other holds that lineages arise elsewhere and enter into adjoining geographical areas to generate the biodiversity of a given region. In the paper, Jablonski and his coauthors argue both factors work in tandem in what they describe as a "perfect storm."

"The gradient involves mutually reinforcing causes—'perfect storms' rather than a single mechanism," Jablonski said. "Many of the most dramatic biotic patterns, past and present, are likely to have been generated by diverse, mutually reinforcing drivers—by both local effects and long-term expansions of geographic ranges."

The researchers argue that these rare "perfect storms" play a key role in the history of life. Candidates include West Pacific "Coral Triangle" diversity peak in today's oceans; the temperate coastlines of southeast Australia and southeast Japan, each of which contain more species than the entire Caribbean region; the Cambrian Explosion of multicellular life 530 million years ago; and the explosive diversifications of both flowering plants and insects over the past 100 million years. "Perfect storms" may also crush biodiversity: the biggest mass extinction in the history of life, at the end of the Paleozoic Era 250 million years ago, may be another example.

Bivalves tell the story

For the study, researchers relied on an analysis of marine bivalves, such as scallops, mussels, and cockles, which have become a model system for large-scale spatial and temporal analyses of biodiversity. They show a strong latitudinal diversity gradient that mirrors other groups on land and sea, while their rich fossil record allows for reliable estimates of origination and extinction. Jablonski and his colleagues argued that the case they make using marine bivalves should apply broadly across different groups of organisms.

"I hope that people will be impressed by how much additional understanding we can achieve by integrating fossil data into studies on the ecological and evolutionary drivers of biodiversity," said Paul Fine, professor of integrative biology at the University of California, Berkeley, who did not participate in the research.

The latitudinal diversity gradient of marine bivalves has been greatly impacted by climate changes over the past millennia, but also by the fact that tropical latitudes are the source for almost all lineages of bivalves, Fine added. "Many people will be surprised to see how decoupled bivalve diversity is from latitude, meaning that marine areas with similar environmental conditions (temperature, productivity, etc.) have wildly different bivalve diversity levels," he said. "In other words, history matters, but it is not the only important factor underlying the latitudinal diversity gradient."

The search for unitary mechanisms for the latitudinal diversity gradient is valuable, but the most extreme patterns of should take into account diverse, overlapping, mutually reinforcing drivers, the paper concluded. "Perfect storms" may become a crucial part of our understanding of past, present and future diversity on Earth.

Explore further: Exceptions prove rule of tropical importance in biodiversity

More information: David Jablonski et al. Shaping the Latitudinal Diversity Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography, The American Naturalist (2016). DOI: 10.1086/689739

Related Stories

Exceptions prove rule of tropical importance in biodiversity

November 7, 2007

Even a group of shellfish that appear to violate the overarching pattern of global biodiversity actually follows the same biological rules as other marine organisms, confirming a general theory for the spread of life on Earth. ...

Bridge species drive tropical engine of biodiversity

June 10, 2013

Although scientists have known since the middle of the 19th century that the tropics are teeming with species while the poles harbor relatively few, the origin of the most dramatic and pervasive biodiversity on Earth has ...

Study Pinpoints Tropics as Biodiversity Spawning Ground

October 5, 2006

A team of scientists has completed a study that explains why the tropics are so much richer in biodiversity than higher latitudes. And they say that their work highlights the importance of preserving those species against ...

Recommended for you

The astonishing efficiency of life

November 17, 2017

All life on earth performs computations – and all computations require energy. From single-celled amoeba to multicellular organisms like humans, one of the most basic biological computations common across life is translation: ...

Unexpected finding solves 40-year old cytoskeleton mystery

November 17, 2017

Scientists have been searching for it for decades: the enzyme that cuts the amino acid tyrosine off an important part of the cell's skeleton. Researchers of the Netherlands Cancer Institute have now identified this mystery ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.