Thinking outside nanocluster's box

December 13, 2016
The total structure of the nanocluster with the location of silver atoms is depicted in blue, magenta, and cyan (with sulfur in yellow, phosphorus in green and carbon in grey, and with hydrogen atoms omitted for simplicity) Credit: Reproduced with permission from ref 1 © 2016 American Chemical Society.

Research at King Abdullah University of Science and Technology (KAUST), Saudi Arabia, finds that silver atoms can be crafted into a box-shaped nanocluster by careful selection of ligand molecules.

When small numbers of metal atoms , they can behave more like molecules or superatoms, with electrons shared among all of the atomic nuclei. These nanoclusters exhibit novel chemical, electrical and optical behavior that may lead to the development of new catalysts, opto-electronic structures and other components for nanotechnology.

Researchers at KAUST have made significant advances in controlling the structure and function of nanoclusters to produce a unique box-shaped cluster of 67 silver atoms with a central core of 23 atoms inside a 44 atom outer box.

"We are trying to figure out the rules that control how these clusters form," said Osman Bakr, KAUST associate professor of material science and engineering and the leader of the research team.

The box shape is very rare, and so demonstrating how to make boxes and rods will bring a new level of control to nanocluster synthesis. The key to controlling the assembly of the nanoclusters lies in the choice of organic (carbon-based) chemical groups called ligands that surround the metal atoms.

Bakr noted that the researchers can explore different shapes of clusters by experimenting with the structure of the ligands. They found that a mixture of phosphorus-containing groups called phosphines and sulfur-containing thiols allowed the unusual box shape of the silver atoms to assemble within the ligand shell.

"When we change the shape of these clusters, we get interesting new properties," Bakr said. He hopes that his team's exploration of nanocluster chemistry may show the way to develop to accelerate chemical reactions that will have use in industry and perhaps also in pharmaceutical science.

A main factor of interest in producing box-shaped clusters is that it reveals how to introduce "directionality" into the clusters. Bakr explained that this is the difficult challenge of making clusters that are structured differently in different directions, unlike the more easily produced perfectly symmetrical forms.

Another innovation the KAUST group is developing that is represented by this latest work is the use of silver atoms in nanoclusters rather than the more commonly used gold.

"Silver is about one tenth the cost of gold, an economic factor that could be very significant when applying these innovations to possible nanotechnology," Bakr pointed out.

The KAUST researchers previously showed that careful control of cluster design can generate silver clusters that behave much the same as gold ones, and now they are crafting silver clusters into a greater variety of shapes.

Explore further: Custom designing silver nanoclusters

More information: Mohammad J. Alhilaly et al. [Ag(SPhMe)(PPh)]: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster, Journal of the American Chemical Society (2016). DOI: 10.1021/jacs.6b09007

Related Stories

Custom designing silver nanoclusters

July 15, 2016

Altering a single atom in a silver nanocluster considerably changes its properties, creating an exciting opportunity to design these clusters.

'Golden' silver nanoparticle looks and behaves like gold

September 22, 2015

(—In an act of "nano-alchemy," scientists have synthesized a silver (Ag) nanocluster that is virtually identical to a gold (Au) nanocluster. On the outside, the silver nanocluster has a golden yellow color, and ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

How many gold atoms make gold metal?

April 10, 2015

Researchers at the Nanoscience Center at the University of Jyväskylä, Finland, have shown that dramatic changes in the electronic properties of nanometre-sized chunks of gold occur in well-defined size range. Small gold ...

Detailed molecular structure of silver nanocrystals determined

September 21, 2016

Structural chemist and chemical crystallographer Dr Alison Edwards has contributed to the characterisation of two large, complex silver nanoclusters of 136 and 374 atoms as part of an international collaboration led by researchers ...

Recommended for you

Nanotube fiber antennas as capable as copper

October 23, 2017

Fibers made of carbon nanotubes configured as wireless antennas can be as good as copper antennas but 20 times lighter, according to Rice University researchers. The antennas may offer practical advantages for aerospace applications ...

Resistive memory components the computer industry can't resist

October 23, 2017

Make way for some new memsistors. For years, the computer industry has sought memory technologies with higher endurance, lower cost, and better energy efficiency than commercial flash memories. Now, an international collaboration ...

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.