

Above and beyond megathrusts—draining pore fluids dampens earthquake tremors

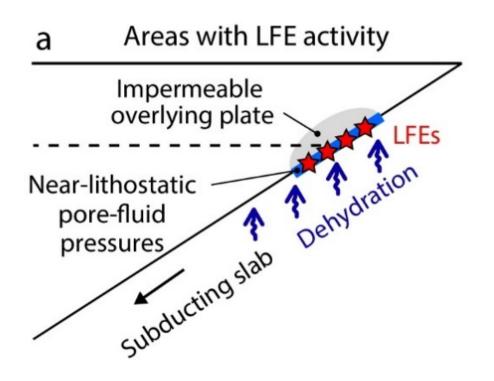
December 19 2016

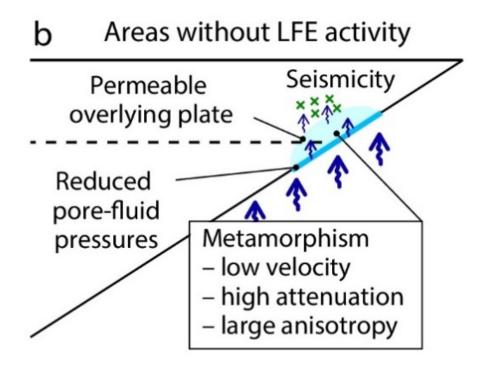
LFE band is outlined in blue, while individual LFEs and active volcanoes are denoted by red dots and white triangles, respectively. Labels A-F mark locations of interest for LFE activity. Names of the regions discussed in the text are also shown. Broken lines denote depth contours of the upper surface of the Philippine Sea slab with an interval of 10 km. Credit: *Nature Communications*

While metamorphic reactions in subducting slabs liberate large amounts of fluids, low-frequency earthquakes (LFE) largely occur beneath the impermeable, un-metamorphosed overlying plate, and are rarely found beneath metamorphosed plates. Scientists at Tokyo Institute of Technology and Tohoku University suggest that undrained conditions are a key factor in the generation of LFEs, whereas well-drained conditions

reduce pore-fluid pressures at the megathrust and inhibit LFEs and associated tremors.

In the Nankai subduction zone, Japan, non-volcanic deep tremors occur down-dip of the megathrust seismogenic zone, and are observed to coincide temporally with short-term slow-slip events (SSEs). They occur within a limited depth range of 30 to 35 km over an along-strike length of ~700 km, associated with subduction of the Philippine Sea Plate. As LFEs coincide spatially with tremor activity, their locations act as a proxy for tremor activity. There are two distinct gaps in LFE activity at the Kii Gap and Ise Gap, while there is limited or no LFE activity beneath Kanto and Kyushu at the extensions of the LFE activity zone (Fig. 1). Junichi Nakajima from Tokyo Institute of Technology and Akira Hasegawa at Tohoku University examined the seismic properties of Nankai, including areas where LFEs are present and absent, in an effort to elucidate the factors controlling LFE generation.


The observed P-wave (dVp) and S-wave (dVs) velocities show the presence of low-velocity anomalies in the overlying plate at Kanto, Ise Gap, Kii Gap, and Kyushu, where there is limited or no LFE activity. LFEs do not occur on the megathrust where dVp and dVs are lower than approximately -4 percent, suggesting a systematic change in seismic velocities in the overlying plate between areas with and without LFE activity. There is a spatial correlation between LFE locations and seismic velocity, attenuation, and anisotropy anomalies. One hypothesis that could explain the variation in seismic properties along the LFE band is along-strike variation in the degree of prograde metamorphism above the megathrust that is proportional to the rate of fluid leakage from the subducting slab into the overlying plate. Notably, large amounts of fluid are liberated from the subducting crust at depths of 30 to 60 km.


The along-strike variations in seismic properties suggest that the overlying plate is less metamorphosed in areas with LFE activity, and is

significantly metamorphosed in areas of limited or no LFE activity. This anti-correlation between LFEs and metamorphism is probably caused by along-strike variation in hydrological conditions in the overlying plate. An impermeable overlying plate restricts fluids to the megathrust, whereas fluids escape from the megathrust if the overlying plate is permeable. Undrained conditions at the megathrust elevate pore-fluid pressures to near-lithostatic values, lower the shear strength of the megathrust sufficiently to facilitate LFEs, and result in a low degree of metamorphism in the overlying plate (Fig. 2a). In contrast, in areas of limited LFE activity, fluids migrate into and metamorphose the permeable overlying plate, reducing pore-fluid pressures at the megathrust, which is no longer weak enough to generate LFEs (Fig. 2b).

(a) Model of enhanced pore-fluid pressure along the megathrust under undrained conditions; (b) Model of reduced pore-fluid pressure along the megathrust and enhanced metamorphism of the overlying plate under well-drained conditions. Low-frequency earthquakes (LFEs) are isolated pulse-like signals with a predominant frequency of ~2 Hz that are observed in continuous tremor signals. Credit: *Nature Communications*

The large number of crustal earthquakes in the Kii Gap and Ise Gap suggests that LFE activity and seismicity in the overlying plate are anticorrelated, largely reflecting the magnitude of fluid flux from the megathrust. The scientists concluded that a well-drained megathrust allows fluids to migrate into the overlying plate, inhibiting LFE activity at the megathrust, but facilitating shallow seismicity due to the decreased shear strength of crustal faults.

More information: *Nature Communications*, <u>DOI:</u> <u>10.1038/NCOMMS13863</u>

Provided by Tokyo Institute of Technology

Citation: Above and beyond megathrusts—draining pore fluids dampens earthquake tremors (2016, December 19) retrieved 16 July 2024 from https://phys.org/news/2016-12-megathrustsdraining-pore-fluids-dampens-earthquake.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.