Image: Impact of a solar storm, 28 October 2003

December 13, 2016, European Space Agency
Credit: SOHO (ESA & NASA)

While this scene looks like the mesmerising result of shaking up a festive snow globe, it is in fact the disturbing effect of one of the most powerful solar storms ever recorded.

Over two weeks in October and November 2003 the Sun was unprecedentedly active, with giant sunspots – over 10 times the diameter of Earth – generating on an almost daily basis.

Solar flares are classed according to the energy they release at X-ray wavelengths. There are five major categories: A, B, C, M and X, further divided into 10 subclasses. M1 flares are 10 times more powerful than C1, and X1 flares are 10 times more powerful than M1 flares, or 100 times more powerful than C1.

Some of the flares witnessed in this two-week period were so powerful they broke right through the top of the X-class range, which is usually given as X10. A flare erupting on 4 November was estimated to have reached at least X28.

The ESA/NASA Solar and Heliospheric Observatory (SOHO), launched in 1995 and still operating today, was monitoring the Sun's stormy behaviour during this time. This image shows its detectors being completely swamped by high-energy protons that were accelerated to nearly the speed of light (300 000 km/s) in the X17 flare of 28 October 2003.

Credit: European Space Agency

When Earth is in the firing line of associated (CMEs), it can lead to beautiful and bright auroras in the atmosphere, giving unparalleled insight into the interaction of the Sun and Earth.

CMEs can also cause serious disruption to radio communications, and power grids.

Although these powerful storms reveal the extremes of the Sun's activity, fortunately for Earth, those on the scale of the 2003 events do not occur very often.

Explore further: Space Image: Sunspots and solar flares

Related Stories

Space Image: Sunspots and solar flares

March 21, 2012

(PhysOrg.com) -- NASA's Solar Dynamics Observatory (SDO) captured this image of an M7.9 class flare on March 13, 2012 at 1:29 p.m. EDT. It is shown here in the 131 Angstrom wavelength, a wavelength particularly good for seeing ...

Solar flares: What does it take to be X-class?

August 10, 2011

Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). The number of ...

Classifying solar eruptions

January 26, 2012

(PhysOrg.com) -- Solar flares are giant explosions on the sun that send energy, light and high speed particles into space. These flares are often associated with solar magnetic storms known as coronal mass ejections (CMEs). ...

New sunspots producing space weather

January 14, 2013

On Jan. 13, 2013, at 2:24 a.m. EST, the sun erupted with an Earth-directed coronal mass ejection or CME. Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and reach ...

Sun unleashes powerful X-class solar flare

March 6, 2012

The Sun has been quiet recently but early today (04:13 UTC on March 5, 2012) it unleashed a powerful X1-class solar flare and coronal mass ejection. The latest estimates indicate the CME will probably miss Earth, but hit ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.