Fully functional 'nano-snowman' has applications for providing greener energy

December 20, 2016 by Harriet Evetts
Credit: University of Birmingham

Scientists at the University of Birmingham have captured the formation of a platinum encrusted nanoparticle that bears a striking resemblance to a festive snowman. As well as providing some Christmas cheer, the fully functional 'nano-snowman' has applications for providing greener energy and for advancements in medical care.

At only five nanometres in size, the nano-snowman was imaged with an aberration-corrected scanning transmission electron microscope at the Nanoscale Physics, Chemistry and Engineering Research Laboratory at the University of Birmingham.

It was formed unexpectedly from a self-assembled platinum-titanium nanoparticle which was oxidised in air, and features 'eyes, nose and a mouth' formed of precious-metal platinum clusters embedded in a titanium dioxide face.

Despite its festive appearance, the nano-snowman performs a serious function of catalysing the splitting of water to make green hydrogen for fuel cells. In this functionality the nanoparticle demonstrates how the inclusion of to a platinum catalyst particle has its benefits.

Platinum is highly functional in performing chemical transformations making it a sought after metal for scientific use. It is also expensive and in critical supply. Therefore, the nano-snowman demonstrates how, by including titanium atoms, the amount of platinum needed is reduced and the existing platinum used is protected against sintering (aggregation of the nanoparticles).

Professor Richard Palmer, head of the University's Nanoscale Physics Research Lab – the first centre for nanoscience in the UK – leads the way in research on nanoparticle science and explains how this information holds great interest for the Energy and Pharmaceutical industries:

"By combining titanium and platinum atoms in a nanoparticle, we can reduce the need to use rare and expensive platinum, and also maintain that which we have used. This could affect a number of applications where platinum is used such as creating green hydrogen for cleaner energy use; generating low energy electrons in radiotherapy that can kill cancer cells; and to perform to create pharmaceutical products."

Saeed Gholhaki, one of the scientists to discover the snowman says:

"In the nano regime atoms are the building blocks of nanoscale structures. These building blocks can form wonderful shapes and structures regulated by the laws of nature. Nanoscience is about understanding the physics behind, and thus controlling these phenomenon, ultimately allowing us to design materials with desired properties. Sometimes the , in this case cores, can assemble in an interesting way to resemble familiar objects like the face of a snowman!"

Explore further: The perfect Christmas gift? A nanoscale snowman

Related Stories

The perfect Christmas gift? A nanoscale snowman

December 22, 2015

Would a jewel-encrusted snowman make the perfect Christmas present? At only 5 nanometres in size, the price might be lower than you think. And it's functional too, catalysing the splitting of water to make green hydrogen ...

Platinum and iron oxide working together get the job done

September 16, 2015

Scientists at the Vienna University of Technology (TU Wien) have figured out how a platinum catalyst works. Its remarkable properties are not just due to the platinum, the iron-oxide substrate beneath also plays a role.

Scientists Create World's Smallest Snowman (w/ Video)

December 4, 2009

(PhysOrg.com) -- David Cox, a scientist in the Quantum Detection group at the National Physical Laboratory in the UK, is an expert in nanofabrication techniques. Recently, using the tools of his trade and a bit of humor, ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.