East Asian dust deposition impacts on marine biological productivity

December 7, 2016, Chinese Academy of Sciences
(a) SeaWiFS true color image showed dust plume over the Chinese marginal seas; Phytoplankton bloom in the southern Yellow Sea (b), the East China Sea (c), and the North Pacific Subtropical Gyre (d). Credit: Saichun Tan

Dust storms have important climatic and environmental effects. According to the "iron hypothesis" proposed in late 1980s, dust containing nutrients (nitrogen, phosphorus, and iron, etc.) could exert a significant influence on the biogeochemical cycle in downwind sea regions, stimulate marine biological productivity, and reduce atmospheric CO2 concentrations.

Since the hypothesis, scientists have studied the impacts of atmospheric deposition on the marine . However, few studies have examined the direct link between natural dust events and marine .

In recent years, a series studies by Dr. TAN Saichun and Prof. SHI Guangyu from the Chinese Academy of Sciences and their co-authors found that significant correlations were observed between East Asian dust events and chlorophyll a concentration in the open ocean of North Pacific Ocean and also in the Chinese marginal seas.

In addition to long-term statistics analysis, dust storm case studies also found that phytoplankton growth in the Yellow Sea was related to dust deposition, and peak chlorophyll a concentration in dust years was above 40 percent higher than that in non-dust years. Those studies suggested the effects of dust fertilization on marine biological productivity.

Recently, the team investigated the transport process of East Asian dust events and quantitatively estimated the contribution of dust deposition to phytoplankton growth.

They found that the combination of satellite-observed column and vertical properties of aerosol were able to show the transport of from the source regions to the research seas (Chinese marginal seas and southern North Pacific) and reduce the identification uncertainties of dust affecting the seas. The contribution of dust deposition to marine biological productivity was estimated from a model of simulated dust deposition flux.

Results showed that dust containing iron was the most important factor affecting phytoplankton growth, and the deposition of iron via severe storms satisfied the increase in demand required for phytoplankton growth (115 to 291 percent), followed by nitrogen (it accounted for up to 1.7 to 4.0 percent), and phosphorus was the smallest one (up to 0.2 to 0.5 percent).

Explore further: Researchers show ocean response to Red Dawn

More information: Sai-Chun Tan et al, Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010, Atmospheric Environment (2017). DOI: 10.1016/j.atmosenv.2016.10.054

Related Stories

Researchers show ocean response to Red Dawn

September 17, 2015

The 'Red Dawn' dust storm which enveloped Sydney in 2009 left more than just a huge clean-up bill in its wake. Griffith researchers have shown for the first time that the Tasman Sea marine ecosystem was also affected by the ...

Dust storms on Mars

August 24, 2015

In the 1870's astronomers first noted the presence of yellow clouds on the surface of Mars and suggested they were caused by windblown dust. Today, dust storms on Mars are well known and those that display visible structures ...

Recommended for you

Antarctic ice shelf 'sings' as winds whip across its surface

October 16, 2018

Winds blowing across snow dunes on Antarctica's Ross Ice Shelf cause the massive ice slab's surface to vibrate, producing a near-constant set of seismic "tones" scientists could potentially use to monitor changes in the ice ...

New understanding of Mekong River incision

October 16, 2018

An international team of earth scientists has linked the establishment of the Mekong River to a period of major intensification of the Asian monsoon during the middle Miocene, about 17 million years ago, findings that supplant ...

World Heritage sites threatened by sea level rise

October 16, 2018

From Venice and the tower of Pisa to the medieval city of Rhodes, dozens of UNESCO World Heritage sites in the Mediterranean basin are deeply threatened by rising sea levels, researchers warned Tuesday.

Was life on the early Earth purple?

October 16, 2018

Early life forms on Earth may have been able to generate metabolic energy from sunlight using a purple-pigmented molecule called retinal that possibly predates the evolution of chlorophyll and photosynthesis. If retinal has ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.