Coding theorem defines decoding error capacity for general scenarios

December 27, 2016, University of Electro-Communications
The coding system over mixed channels with general mixture. Credit: University of Electro-Communications

The rate at which information can be coded so that it can be decoded within a particular error probability constraint is one of the "major research topics in information theory" as Hideki Yagi at the University of Electro-Communications, Te Sun Han at the National Institute of Information and Communications Technology, and Ryo Nomura at Senshu University in Japan explain in their recent report. In this latest work they formulate a theorem for a general class of coding theorems that gives a formula for the decoding error capacity. They also show how the theorem reduces to known theorems for more restricted scenarios.

The researchers describe their system as an input stream that is coded into the output by a sequence. The channel capacity is then the rate at which information can be reliably transmitted by that channel.

Previous work has demonstrated formulae for the error capacity for coding channels but they were limited by the length of the coding stream - which becomes uncomputable for general scenarios. Other work has characterised the channel capacity in such a way that the complexity does not increase with the channel length, but they are limited in terms of what mixture of channel types can be coded in this way.

While progress has been made towards more general theorems, Yagi, Han and Nomura now establish the first-order coding theorem, which gives a formula for the error-capacity for mixed memoryless channels with general mixture. They also provide a direct part of the second-order theorem, and show that other previously established formulas can be obtained by reducing the theorem to restricted scenarios.

They add in their concluding remarks, "Extensions of the established formulas for mixed channels with general input and/or output alphabets are interesting and practically important research subjects."

Explore further: The golden anniversary of black-hole singularity

More information: Hideki Yagi et al. First- and Second-Order Coding Theorems for Mixed Memoryless Channels With General Mixture, IEEE Transactions on Information Theory (2016). DOI: 10.1109/TIT.2016.2573310

Related Stories

The golden anniversary of black-hole singularity

October 1, 2015

When a star collapses forming a black hole, a space-time singularity is created wherein the laws of Physics no longer work. In 1965 Sir Roger Penrose presented a theorem where he associated that singularity with so-called ...

In quantum channels, zero plus zero can equal non-zero

October 6, 2008

(PhysOrg.com) -- Physicists have discovered a strange characteristic of quantum communication channels. If two quantum channels each have a transmission capacity of zero, they may still have a nonzero capacity when used together. ...

Entanglement can help in classical communication

March 30, 2011

(PhysOrg.com) -- When most of us think of entanglement, our minds jump immediately to quantum communication. "Entanglement has become very well known and useful in quantum communication," Robert Prevedel tells PhysOrg.com. ...

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.