Means by which cells 'eat' silicon nanowire revealed

December 20, 2016 by Bob Yirka report
A schematic diagram of cellular internalization of silicon nanowires. Credit: John Zimmerman

(Phys.org)—A team of researchers at the University of Chicago has developed new technology that allows for recording and viewing the process by which a silicon nanowire is consumed by an individual cell. In their paper published in the journal Science Advances, the team describes the technique they used and why they believe it could lead to new ways of merging biological systems and electronic devices.

Prior research has shown that certain types of would consume silicon nanowires introduced to the same . In this new effort, the researchers have developed a way to study the process, revealing how it comes about—a necessary step before attempting to use the nanowires to control the behavior of a cell or as a means of tricking a cell into consuming a drug.

Scientists are eager to find a way to gain control over cells in order to combat diseases at a cellular level. That was what led researchers to search for a material that could be consumed naturally by a cell, but which could also be used as a control mechanism.

To better understand what happens when encounter certain cells (such as those lining the inside of blood vessels) the researchers combined two types of technology, an electron microscope and an optical imaging tool they designed specifically for tracking the movement of the nanowire—they call it a scatter-enhanced phase contrast. This setup allowed the researchers to watch as part of the outer membrane of the cell reached out to the nanowire and wrapped itself around it and then pulled it closer, eventually forming a bubble encasing the nanowire. Once the nanowire was secured, it was pulled into the cell, where it was corralled by various bits of the inner cell to a location near the nucleus. The researchers report that the process appears to be identical to phagocytosis—the process immune cells use to consume bacteria.

The video will load shortly
Cellular internalization of silicon nanowires. Credit: Video edited by John F. Zimmerman; Music by AlekSm - Clound Nine Soundcloud: officialaleksm

The observed that consuming a nanowire did not appear to cause any harm to the cell. This suggests that modified nanowires could one day serve as an electrical conduit for use in controlling some of the behaviors inside the cell, or to carry drugs into the cell that ordinarily are barred.

Explore further: Fabrication of silicon nanowires bridging thick silicon structures

More information: J. F. Zimmerman et al. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires, Science Advances (2016). DOI: 10.1126/sciadv.1601039

Abstract
The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active "burst-like" transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high–aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies.

Related Stories

Eco-friendly production of silicon nanowires

October 19, 2016

Physicists from the Lomonosov Moscow State University have worked out a new and more eco-friendly method of obtaining silicon nanowires that replaces hydrofluoric acid (HF) with ammonium fluoride (NH4F).

A novel method of making high-quality vertical nanowires

August 29, 2016

Researchers at Hokkaido University describe a novel method of making high quality vertical nanowires with full control over their size, density and distribution over a semi-conducting substrate. The findings are reported ...

Recommended for you

Graphene photodetector enhanced by fractal golden 'snowflake'

January 16, 2017

(Phys.org)—Researchers have found that a snowflake-like fractal design, in which the same pattern repeats at smaller and smaller scales, can increase graphene's inherently low optical absorption. The results lead to graphene ...

Nanoscale view of energy storage

January 16, 2017

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

Scientists create first 2-D electride

January 11, 2017

(Phys.org)—Researchers have brought electrides into the nanoregime by synthesizing the first 2D electride material. Electrides are ionic compounds, which are made of negative and positive ions. But in electrides, the negative ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.