Advance in intense pulsed light sintering opens door to improved electronics manufacturing

December 22, 2016
Unsintered, left, and sintered nanoparticles. Credit: Oregon State University

Faster production of advanced, flexible electronics is among the potential benefits of a discovery by researchers at Oregon State University's College of Engineering.

Taking a deeper look at photonic sintering of silver nanoparticle films—the use of intense pulsed light, or IPL, to rapidly fuse functional conductive nanoparticles—scientists uncovered a relationship between film and densification. Densification in IPL increases the of a nanoparticle thin-film or pattern, with greater density leading to functional improvements such as greater electrical conductivity.

The engineers found a temperature turning point in IPL despite no change in pulsing energy, and discovered that this turning point appears because densification during IPL reduces the nanoparticles' ability to absorb further energy from the light.

This previously unknown interaction between optical absorption and densification creates a new understanding of why densification levels off after the temperature turning point in IPL, and further enables large-area, high-speed IPL to realize its full potential as a scalable and efficient manufacturing process.

Rajiv Malhotra, assistant professor of mechanical engineering at OSU, and graduate student Shalu Bansal conducted the research. The results were recently published in Nanotechnology.

"For some applications we want to have maximum density possible," Malhotra said. "For some we don't. Thus, it becomes important to control the densification of the material. Since densification in IPL depends significantly on the temperature, it is important to understand and control temperature evolution during the process. This research can lead to much better process control and equipment design in IPL."

Intense pulsed light sintering allows for faster densification—in a matter of seconds - over larger areas compared to conventional sintering processes such as oven-based and laser-based. IPL can potentially be used to sinter nanoparticles for applications in printed electronics, solar cells, gas sensing and photocatalysis.

Earlier research showed that nanoparticle densification begins above a critical optical fluence per pulse but that it does not change significantly beyond a certain number of pulses.

This OSU study explains why, for a constant fluence, there is a critical number of pulses beyond which the densification levels off.

"The leveling off in density occurs even though there's been no change in the optical energy and even though is not complete," Malhotra said. "It occurs because of the temperature history of the nanoparticle film, i.e. the temperature turning point. The combination of fluence and pulses needs to be carefully considered to make sure you get the film density you want."

A smaller number of high-fluence pulses quickly produces high density. For greater density control, a larger number of low-fluence pulses is required.

"We were sintering in around 20 seconds with a maximum temperature of around 250 degrees Celsius in this work," Malhotra. "More recent work we have done can sinter within less than two seconds and at much lower temperatures, down to around 120 degrees Celsius. Lower temperature is critical to flexible electronics manufacturing. To lower costs, we want to print these flexible electronics on substrates like paper and plastic, which would burn or melt at higher temperatures. By using IPL, we should be able to create production processes that are both faster and cheaper, without a loss in product quality."

Products that could evolve from the research, Malhotra said, are radiofrequency identification tags, a wide range of , wearable biomedical sensors, and sensing devices for environmental applications.

Explore further: Photonic 'sintering' may create new solar, electronics manufacturing technologies

More information: S Bansal et al, Nanoscale-shape-mediated coupling between temperature and densification in intense pulsed light sintering, Nanotechnology (2016). DOI: 10.1088/0957-4484/27/49/495602

Related Stories

Cold sintering of ceramics instead of high-temperature firing

August 16, 2016

Both hobbyists' pottery and engineered high-performance ceramics are only useable after they are fired for hours at high temperatures, usually above 1000 °C. The sintering process that takes place causes the individual particles ...

A cool approach to flexible electronics

July 10, 2014

A nanoparticle ink that can be used for printing electronics without high-temperature annealing presents a possible profitable approach for manufacturing flexible electronics.

Recommended for you

Nanotube fiber antennas as capable as copper

October 23, 2017

Fibers made of carbon nanotubes configured as wireless antennas can be as good as copper antennas but 20 times lighter, according to Rice University researchers. The antennas may offer practical advantages for aerospace applications ...

Resistive memory components the computer industry can't resist

October 23, 2017

Make way for some new memsistors. For years, the computer industry has sought memory technologies with higher endurance, lower cost, and better energy efficiency than commercial flash memories. Now, an international collaboration ...

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

24volts
not rated yet Jan 02, 2017
As I can't afford the article I have a question for anyone that has access. A few years ago I read an article where one of the airplane companies were using pulsed light to strip paint off of airplanes is preparation for a new paint job. How do these guys keep this stuff from basically blasting off the surface that holds it when the light hits it? Just a lot lower intensity maybe?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.