Tiny 'walking' proteins could be used to investigate mechanical deformations in soft materials

November 30, 2016, Hokkaido University
Change in direction of microtubules upon deformation of PDMS. When the PDMS were stretched, the microtubules moved faster and aligned themselves along the stretching axis. On the other hand, when the PDMS were compressed, the microtubules slowed down and aligned themselves perpendicular to the compression. Credit: Inoue D. et al., Nature Communications, October 3, 2016

Tiny "walking" proteins could be used to investigate mechanical deformations in soft materials according to Hokkaido University researchers.

The researchers employed a concept that is a part of the transportation network in cells. "Walking" filament-shaped proteins, such as kinesin, carry cargo on one of their ends while two foot-shaped structures on the other end move one "foot" in front of the other along a network of associated in the cells.

The team aimed to test whether these walking proteins and their associated proteins could be used as a sensor for stretching and compressing a soft silicon-based material polydimethylsiloxane (PDMS) that is used, for example, in manufacturing contact lenses.

First, they deposited kinesin motor proteins on the of the PDMS so that one end of the kinesin proteins was attached to the PDMS, while the other end remained free. Next, the team deposited fluorescent-microtubules on the kinesin-layered surface. The layered PDMS was then placed in a special stretch chamber that was observed under the microscope.

When the team neither stretched nor compressed the PDMS, the microtubules moved randomly on the PDMS surface at a constant velocity. This movement effectively happens due to the kinesin proteins "walking in place" because they are attached to the surface of the PDMS. But as they move their "feet" along the free microtubules, the microtubules are forced to move around randomly on the material's surface.

A color map illustrating the orientation angle of the probes with respect to a horizontal stretch axis in a homogeneous stress field. Credit: Inoue D. et al., Nature Communications, October 3, 2016

When the team stretched the PDMS, the microtubules moved faster and aligned themselves parallel to the stretching axis. The density of kinesin proteins on the surface also decreased as a result of the stretching. When the PDMS were compressed, however, the microtubules slowed down and aligned themselves perpendicular to the compression axis, while the density of kinesin proteins on the surface of the material increased.

The team also tested the use of the microtubules as "probes" to detect the mechanical deformation of another soft material, polyurethane, a material commonly used in the manufacture of artificial skin and heart valves, and came up with similar results.

"Although further research is still required to prevent the denaturation of the proteins which occurs during the experiment, our present work should facilitate the elucidation of the surface science of in the future," the researchers say in their study published in the journal Nature Communications. Akira Kakugo, the lead author of the paper, further explains: "since deforming soft materials provides environments that resemble living cells, our method could also help make clear the functions and mechanisms of motor proteins and microtubules interacting in the cells."

Fluorescent-microtubules run randomly on the surface of PDMS. Credit: Hokkaido University

Explore further: Molecular motor grows cell's microtubules

More information: Daisuke Inoue et al. Sensing surface mechanical deformation using active probes driven by motor proteins, Nature Communications (2016). DOI: 10.1038/ncomms12557

Related Stories

Molecular motor grows cell's microtubules

October 26, 2015

Motor proteins that pause at the ends of microtubules and produce pushing forces can also stimulate their growth, according to researchers at Penn State. The proteins' function could be a critical component in understanding ...

Experiments show hypothesis of microtubule steering accurate

January 23, 2014

Tiny protein motors in cells can steer microtubules in the right direction through branching nerve cell structures, according to Penn State researchers who used laboratory experiments to test a model of how these cellular ...

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.