Controlling plant regeneration systems may drive the future of agriculture

November 2, 2016, VIB (the Flanders Institute for Biotechnology)

The ability to self-repair damaged tissue is one of the key features that define living organisms. Plants in particular are regeneration champions, a quality that has been used for centuries in horticultural techniques such as grafting. Belgian scientists from VIB and Ghent University have now discovered a key protein complex that controls plant tissue repair. Understanding this mechanism is of great agricultural importance: crops and edible plants might be cultivated more efficiently and made more resistant to parasitic plants. The results are published in the leading journal Nature Plants.

In humans and animals, missing or can be replenished by . These basic, can change into more specific cell types and divide to produce new cells that replace the damaged . Plants are characterized by a similar system, but their regenerative properties are generally much greater. While this asset has been widely used in grafting and plant tissue culture techniques, the mechanism by which cells are triggered to form new cells after injury remained largely elusive.

Agricultural breakthrough

A team led by professor Lieven De Veylder (VIB-Ghent University) uncovered a novel protein complex controlling tissue repair in plants. One dead plant cell is sufficient to send a signal to the surrounding cells, which activates the protein complex. As a result, these neighboring cells are triggered to divide in such a way that the newly produced cells can replace the dead ones.

Prof. De Veylder (VIB-Ghent University): "There are also a lot of plants and crops that don't have such swift repair systems, such as rice, wheat, corn, bananas and onions. By fully understanding this regeneration system, we might be able to induce it in those kinds of plants, thereby increasing cultivation efficiency. The same goes for grafting, which is employed in the wine and fruit industries, among others. Our findings may help to drastically reduce graft failure rate."

Harvesting the fruits of evolution

A new ecological strategy to counter is another potential future application of the study's results. These organisms, accounting for approximately 1% of flowering plants, are actually grafts that are able to grow through the mechanism described by the research project. In time, scientists may be able to block the natural grafting of these parasites onto economically important crops.

Prof. De Veylder (VIB-Ghent University): "Our findings illustrate how science can capitalize on the mechanisms of evolution. After all, nature has gradually developed solutions to nearly every biological problem. As scientists, it is our duty to get to the bottom of how these processes function and apply them to the benefit of society. As follow-up steps, we will check whether our results can be extrapolated to crops such as corn, and try to figure out the signals that activate the protein complex."

Explore further: Why plants usually live longer then animals

More information: Jefri Heyman et al. The heterodimeric transcription factor complex ERF115–PAT1 grants regeneration competence, Nature Plants (2016). DOI: 10.1038/nplants.2016.165

Related Stories

Why plants usually live longer then animals

October 24, 2013

Stem cells are crucial for the continuous generation of new cells. Although the importance of stem cells in fuelling plant growth and development still many questions on their tight molecular control remain unanswered. Plant ...

Biologists find how plants reconstitute stem cells

May 19, 2016

Stem cells are typically thought to have the intrinsic ability to generate or replace specialized cells. However, a team of biologists at NYU showed that regenerating plants can naturally reconstitute their stem cells from ...

How plants time their flowering

October 24, 2016

The onset of flowering is a central event in the life cycle of a plant and ensures reproduction. From an agricultural perspective, it is important that flowering takes place at the right time to optimise harvests. Professor ...

3-D live imaging reveals how plants grow new lateral roots

September 27, 2016

Researchers have used 3-D live imaging to observe the formation process of lateral roots in plants, and clarified part of the mechanism that creates new meristematic tissue. If the root formation mechanism in plants is revealed ...

Recommended for you

Climate change not main driver of amphibian decline

September 25, 2018

While a warming climate in recent decades may be a factor in the waning of some local populations of frogs, toads, newts and salamanders, it cannot explain the overall steep decline of amphibians, according to researchers.

The grim, final days of a mother octopus

September 25, 2018

Octopuses are the undisputed darlings of the science internet, and for good reason. They're incredibly intelligent problem-solvers and devious escape artists with large, complex nervous systems. They have near-magical abilities ...

Team names world's largest ever bird—Vorombe titan

September 25, 2018

After decades of conflicting evidence and numerous publications, scientists at international conservation charity ZSL's (Zoological Society of London) Institute of Zoology, have finally put the 'world's largest bird' debate ...

Team discovers new species of dazzling, neon-colored fish

September 25, 2018

On a recent expedition to the remote Brazilian archipelago of St. Paul's Rocks, a new species of reef fish—striped a vivid pink and yellow—enchanted its diving discoverers from the California Academy of Sciences. First ...

Built-in sound amplifier helps male mosquitoes find females

September 25, 2018

The ears of male mosquitoes amplify the sound of an approaching female using a self-generated phantom tone that mimics the female's wingbeats, which increases the ear's acoustic input by a factor of up to 45,000, finds a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.