Protein feed and bioplastic from farm biogas

Protein feed and bioplastic from farm biogas
VTT's gas fermentation process. Credit: Technical Research Centre of Finland (VTT)

VTT has developed a solution for converting even small sources of methane-rich biogas into raw materials for animal feed or bioplastic on farms, landfills and wastewater treatment plants. This emission-reducing solution is based on the ability of methanotrophic bacteria to grow on methane in gas fermentors.

Methane-rich biogas is generated on farms, landfills and in anaerobic digestion of biological material. Until now, the processing of such gas into biomethane has only been viable on large biogas-producing sites; small biogas sources such as farms have remained largely unexploited.

The method developed by VTT would reduce emissions, increase the use of biogas and improve self-sufficiency.

It is based on the ability of methanotrophic bacteria to grow in aerobic conditions in gas fermentors, using methane as the source for carbon and energy. The process is as follows: The methane gas generated by is fed into a gas fermentor. A growth medium containing the methanotrophic bacteria circulates through the pipes of the gas fermentor, creating a single-cell protein biomass with a of around 60%. The cell mass is filtered, pasteurised and dried.

The methanotrophic bacteria and (depending on the growth conditions) cell mass may also contain polyhydroxybutyrate plastic (PHB) - a natural substance in the cells that enables them to store conserve energy. For example, PHB can be used as a raw material for biodegradable packaging material, instead of oil-based and non-biodegradable plastics such as polypropylene (PP). The cell mass may contain 50% half of the PHB, in which case the protein content is around 30%. Extraction is used to separate the PHB and protein fractions from the dried .

Protein feed and bioplastic from farm biogas
Metanotrophic protein biomass. Credit: VTT

The production rate of VTT's method needs to be improved: a couple of years of development work lies ahead. In addition, the protein fraction's suitability as a feed component needs to be tested.

Based on previous studies, single-cell proteins produced using micro-organisms can be substituted for ingredients such as meat, soya, egg whites or fish in food and feed. Finland is import-dependent with respect to soya: a fluctuating worldwide crop causes price fluctuations and uncertainty about the availability of this foodstuff. In Europe and Finland, attempts are being made to meet the challenge of protein feed for domesticated animals by improving protein self-sufficiency. This mainly involves promoting the production of vegetable protein. The production of single-cell proteins represents a good opportunity to improve our protein self-sufficiency.

  • Protein feed and bioplastic from farm biogas
    Metanotrophic bacteria culture. Credit: Technical Research Centre of Finland (VTT)
  • Protein feed and bioplastic from farm biogas
    Gas fermentor. Credit: Technical Research Centre of Finland (VTT)

Explore further

New method for quantifying methane emissions from manure management

Citation: Protein feed and bioplastic from farm biogas (2016, November 17) retrieved 25 November 2020 from https://phys.org/news/2016-11-protein-bioplastic-farm-biogas.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
5 shares

Feedback to editors

User comments