Spin liquid on a peak

November 8, 2016, Okinawa Institute of Science and Technology
Neutron-scattering map shows Bragg peaks (spots) and pinch points (bow-tie shapes) . Credit: Okinawa Institute of Science and Technology Graduate University - OIST

A little frustration can make life interesting. This is certainly the case in physics, where the presence of competing forces that cannot be satisfied at the same time – known as frustration – can lead to rare material properties. Just as water molecules become more ordered when they cool and freeze into ice crystals, the atoms of magnets become more ordered with decreasing temperature as the tiny magnetic fields or 'spins' of individual atoms start to point in the same direction. So-called 'spin liquids' are the exception to this rule, with spins continuing to fluctuate and point in different directions even at very low temperatures. They offer exciting possibilities for new discoveries in physics. Scientists from the Okinawa Institute of Science and Technology Graduate University (OIST) have modelled a particular spin liquid, showing that disorder can co-exist with order. Three major publications mark the milestones in this field of research.

First, Dr. Ludovic Jaubert from OIST's Theory of Quantum Matter Unit worked alongside scientists at University College London and the Ecole Normale Supérieure of Lyon to propose a model for the co-existence of both magnetic order and disorder back in 2014. By simulating what would happen when neutrons are fired at frustrated magnets – so-named because of the strong competition of forces between the spins of – Jaubert and colleagues were able to produce brightly-colored neutron-scattering maps. If the spins in the atoms of the material were lining up in an ordered fashion in the magnet you would expect to see spots on the maps known as 'Bragg peaks', whereas with spin liquids you would expect to see bow-tie shapes, called 'pinch points'. To their surprise, the scientists noticed both Bragg peaks and pinch points on their neutron-scattering maps, suggesting that the disordered properties of a can simultaneously exist with ordered magnetism.

"Spin liquids are paragons of magnetic disorder. It was very exciting to see the characteristic features of a spin liquid in a partially ordered magnet. It is really motivating to think of the fundamental opportunities this offers for our understanding of condensed matter," says Jaubert.

The second milestone in this field of research occurred earlier this year, when a publication in Nature Physics showed that the theory of Dr. Jaubert and coworkers held up in experimental observation, using the magnetic material neodymium zirconate (Nd2Zr2O7). "The results of this experiment confirm the theory that Dr. Jaubert presented on the co-existence of magnetic order and disorder in 2014," says Dr. Owen Benton, a former Postdoctoral Scholar in the Theory of Quantum Matter Unit, led by Professor Nic Shannon.

Credit: Okinawa Institute of Science and Technology Graduate University - OIST

However, more work was necessary to link this new experiment to Jaubert's original idea. To uncover how neodymium zirconate could be both ordered and disordered at the same time, Benton set to work on the latest milestone of this research, theorizing an appropriate microscopic model for this magnetic material. Using his model, Benton showed that neodymium zirconate exists in both an ordered and fluctuating state, making it a very unusual kind of magnet.

The work also shows that neodymium zirconate is on the edge of becoming a liquid – a rare state of matter opening a back door into the quantum world. In a true quantum spin liquid, the spins of a material would not just fluctuate through many different directions as a function of time but would point in many different directions at the same time.

"If you could show that there was such a thing as a quantum spin liquid it would be like an example of Schrodinger's cat on a large object," says Benton. Schrodinger's cat is a famous thought experiment in physics in which a cat in a sealed box with a radioactive source is both alive and dead at the same time. Just as the cat exists in multiple states, i.e. alive and dead, simultaneously, this research paves the way for finding real magnets that are in many states at once.

"This study also demonstrates that we can get a very complete picture of the physics of neodymium zirconate using a model," says Benton. Further theoretical and experimental research of this and related materials could reveal even more unexpected and exciting phenomena.

Explore further: The quest for spin liquids

More information: Owen Benton. Quantum origins of moment fragmentation in, Physical Review B (2016). DOI: 10.1103/PhysRevB.94.104430

Related Stories

The quest for spin liquids

March 15, 2016

Post-doctoral researchers, Karim Essafi, Owen Benton and Ludovic Jaubert in the Theory of Quantum Matter Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) are on a quest to find out as much ...

Novel state of matter: Observation of a quantum spin liquid

July 26, 2016

A novel and rare state of matter known as a quantum spin liquid has been empirically demonstrated in a monocrystal of the compound calcium-chromium oxide by team at HZB. According to conventional understanding, a quantum ...

A new state of matter: Quantum spin liquids explained

April 29, 2016

Magnetism is one of the oldest recognised material properties. Known since antiquity, records from the 3rd century BC describe how lodestone, a naturally occurring magnetised ore of iron, was used in primitive magnetic compasses. ...

New state of matter detected in a two-dimensional material

April 4, 2016

An international team of researchers have found evidence of a mysterious new state of matter, first predicted 40 years ago, in a real material. This state, known as a quantum spin liquid, causes electrons - thought to be ...

Magnetic monopoles in spin ice crystals

November 12, 2015

Today one of the major goals of physicists is to unify the forces of nature into a Grand Unified Theory that could portray a more elegant and comprehensive representation of the Universe. One step towards this big theory ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.