Researchers study plant aging, gain insights into crop yields and more

November 22, 2016, University of Wisconsin-Madison
An epigenetic protein called HDAC jumpstarts the process of aging, which is responsible for the many-colored leaves of the fall season, according to new research from UW–Madison. PHOTO: BRYCE RICHTER

New insights into the mechanism behind how plants age may help scientists better understand crop yields, nutrient allocation, and even the timing and duration of fall leaf color.

In a new paper published today (Tues., Nov. 22) in the journal eLife, the University of Wisconsin-Madison's Xuehua Zhong and her colleagues describe how an epigenetic protein complex acts as a link between the environment and the genome to promoting the onset of aging in plants.

That complex is a specific histone deacetylase (HDAC) called HDA9 and it helps translate environmental signals, like darkness, into epigenetic change. Epigenetics refers to the alterations that influence the expression of genes encoded within the DNA of living organisms, rather than changes to the DNA itself.

For instance, fall colors change when shorter daylight hours influence the expression of the genes responsible for particular leaf pigments.

"Epigenetics is one of the important players in the cross-talk between the environment and our bodies," says Zhong, assistant professor of genetics and a faculty member at the Wisconsin Institute for Discovery. Her research focuses on how gene expression in growth and development is regulated by epigenetic modification and how that regulation can be influenced by environmental stimuli.

Aging, or senescence, is an elaborate process vital to the life cycle of a plant. The efficiency of this process has critical implications for biological success: Premature aging could result in a reduction in yield, a grave concern for the production of offspring and cultivation of crops. Belated senescence, on the other hand, reduces a plant's efficiency by delaying reallocation of nutrients and may impact the viability of the next generation.

By searching the genome of the common experimental plant model Arabidopsis thaliana (commonly known as thale cress) for locations where HDA9 binds, Zhong's group found evidence that it is a key player in the senescence process. It acts on previously identified genes that code for various components of aging.

"We found that this protein binds to a lot of genes that have potential functions in the aging process. That provides some other information which led us to study the potential functions in [the process]," says Xiangsong Chen, a postdoctoral researcher working with Zhong and first author on the paper.

The team says that the newly-profiled HDAC jumpstarts the process of aging, which is responsible for the many-colored leaves of the fall season. This process is also of key importance commercially, Zhong says, and the mechanistic insight into the initiation of aging is a significant step forward in epigenetics research.

"We believe that this information will provide a foundation for developing a new strategy to manipulate the plant aging processes to improve crop productivity, which could prove very beneficial for agricultural improvement," says Zhong.

Explore further: In cancer and aging, interconnected roles for apoptosis and cellular senescence

More information: Xiangsong Chen et al. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in, eLife (2016). DOI: 10.7554/eLife.17214

Related Stories

What genes help blossoms last longer?

May 24, 2010

Some cut flowers and potted plants are better than others at fending off the aging process, known as senescence. To help tomorrow's blooms stay fresh longer, Agricultural Research Service (ARS) plant physiologist Cai-Zhong ...

Aging cells unravel their DNA

December 16, 2013

Senescent cells, which are metabolically active but no longer capable of dividing, contribute to aging, and senescence is a key mechanism for preventing the spread of cancer cells. A study in The Journal of Cell Biology identifies ...

Grafted plants' genomes can communicate with each other

January 19, 2016

Agricultural grafting dates back nearly 3,000 years. By trial and error, people from ancient China to ancient Greece realized that joining a cut branch from one plant onto the stalk of another could improve the quality of ...

Recommended for you

Semimetals are high conductors

March 18, 2019

Researchers in China and at UC Davis have measured high conductivity in very thin layers of niobium arsenide, a type of material called a Weyl semimetal. The material has about three times the conductivity of copper at room ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.