Scientists trace plant hormone pathway back 450 million years

October 24, 2016, Purdue University
Arabidopsis thaliana. Credit: Wikipedia.

Purdue scientists got a glimpse into more than 450 million years of evolution by tracing the function of a hormone pathway that has been passed along and co-opted by new species since the first plants came onto land.

Flowering today, known as angiosperms, use the phytohormone abscisic acid (ABA) to keep seeds dormant until ready for germination and to open and close stomates, tiny openings on leaves used to control gas exchange.

"This hormone is important for drought tolerance," said Jody Banks, Purdue professor of botany and plant pathology. "When plants are water-stressed, ABA levels shoot up and close the stomates so the plants won't wilt as quickly."

It was unclear, however, what kind of role ABA played in ferns and other lycophytes, which Banks studies. Like many of her peers, Banks assumed that ABA would also play a role in stomate function.

But when she developed a line of mutant ferns that could not process ABA, she found that there was no difference between her mutants and wild type ferns that were water-stressed.

Banks shelved the research for nearly two decades before teaming with scientists at Australia's University of Tasmania and Germany's University of Würzburg. Together, they determined that ABA plays a key role in determining the sex of ferns, using a mechanism that was co-opted by flowering plants to tolerate desiccation.

Matching the genes of Arabidopsis, a model flowering plant, and the fern Ceratopteris richardii, scientists at the University of Tasmania found the homologous fern gene responsible for ABA signaling. Scientists at the University of Würzburg then found that the proteins produced when the ABA signaling pathway is turned on do not interact with proteins that would open and close stomates. They realized that regulating stomate closing by ABA was novel to angiosperms, which evolved from ferns about 150 million years ago.

ABA, they found, promotes femaleness in ferns. When a wild type plant is exposed to ABA, the plant becomes female. When ABA pathways are disrupted, as with the mutants Banks studied, the plants become male, even in the presence of ABA. They also discovered that ABA is linked to spore dormancy in ferns, just as ABA is linked to seed dormancy in angiosperms.

"Promoting a dormant state was likely the original function of ABA as plants came up out of the water onto the land," Banks said. "You wouldn't need that dormancy if you were living in water. But on land, you need to have dormancy to survive desiccation."Banks and her colleagues will continue studying other ABA pathways in lycophytes and , as well as hormones that control of sex of plants.

The study is published in the Proceedings of the National Academy of Sciences.

Explore further: Researchers find ferns communicate with one another to decide gender

More information: Abscisic acid controlled sex before transpiration in vascular plants, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1606614113

Related Stories

Selaginella genome adds piece to plant evolutionary puzzle

May 5, 2011

(PhysOrg.com) -- A Purdue University-led sequencing of the Selaginella moellendorffii (spikemoss) genome - the first for a non-seed vascular plant - is expected to give scientists a better understanding of how plants of all ...

Ferns borrowed genes to flourish in low light

April 14, 2014

During the age of the dinosaurs, the arrival of flowering plants as competitors could have spelled doom for the ancient fern lineage. Instead, ferns diversified and flourished under the new canopy—using a mysterious gene ...

Recommended for you

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.