Performance-enhancing... research? New measurement could help elite athletes

October 4, 2016, York University
The three stages of drop spreading on any surface. Credit: York University

Canadian Olympic phenomenon Penny Oleksiak may be able to glide through the water even faster at her next Olympic Games, due in part to a new measurement tool invented by York University researchers.

"We asked ourselves the basic question: 'how does liquid spread on a surface?', be it Penny's swimsuit while underwater, or the morning dewdrops on grass," says Sushanta Mitra, a professor in York's Lassonde School of Engineering. "Oleksiak's exceptional ability in the pool is undeniable. A more advanced suit could help her beat her personal best by reducing fluid resistance underwater."

Mitra's research has resulted in a that measures the rapid process of liquid drops spreading on any surface. Interface scientists in his Micro & Nano-scale Transport (MNT) lab at York U have created an experimentation tool with funding from the Natural Sciences and Engineering Research Council (NSERC). The tool, built with an optical path using specialized microscopic lenses, captures the bottom view and side view of a spreading drop. It enabled researchers to observe the initial stages of a drop spreading on any surface inside a glass container filled with water.

"Since water is a viscous medium, the spreading process was significantly slowed, which allowed us to discover the initial regime. This is the first time this process has ever been measured," says Mitra, whose team also performs breakthrough translation research in water quality monitoring. "Soon we'll have new and improved products in water-repellant coatings, materials with underwater drag reductions and the like, on the market," says Mitra.

Traditional drop spreading experiments are conducted in air and there needs to be a few nanometer resolution to accurately characterize the initial stage of the process. That is below the physical limit of current optical systems used in experiments, according to co-author Surjyasish Mitra, whose graduate studies at York focus on fluid dynamics. "We overcame the challenges of conducting experiments underwater by using the new tool which brought down the length scale to micron levels."

The study, "Understanding the Early Regime of Drop Spreading," is published as the cover feature in peer-reviewed journal for fundamental interface science Langmuir.

Explore further: Invention promises rapid detection of E. coli in water

More information: Surjyasish Mitra et al. Understanding the Early Regime of Drop Spreading, Langmuir (2016). DOI: 10.1021/acs.langmuir.6b02189

Related Stories

Invention promises rapid detection of E. coli in water

May 17, 2016

Tragedies like the E. coli outbreak in Ontario's Walkerton in May 2000 could be averted today with a new invention by researchers at York University that can detect the deadly contaminant in drinking water early.

Discovery could lead to new way of cleaning up oil spills

June 21, 2013

(Phys.org) —University of Alberta mechanical engineering researchers have shown that a simple glass surface can be made to repel oil underwater. This has huge implications for development of a chemical repellent technology ...

Researchers make breakthrough in dewetting surfaces

September 29, 2016

How would you like a kitchen surface that cleans itself? Technological advances such as this could be one step closer after a breakthrough by Northumbria University and Nottingham Trent University.

New polymer developed

May 2, 2005

New coating becomes water repellant when wet; applications include medical diagnostic equipment A Virginia Commonwealth University chemical engineering team has developed a novel material that becomes water repellent when ...

Recommended for you

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.