'Nano-kebab' fabric breaks down chemical warfare agents

October 3, 2016 by Matt Shipman, North Carolina State University
Credit: North Carolina State University

Researchers have created a fabric material containing nanoscale fibers that are capable of degrading chemical warfare agents (CWAs). Uniform coatings of metal-organic frameworks (MOFs) were synthesized on top of the nanofibers, forming unique kebab-like structures. These MOFs are what break down the CWAs, rendering them harmless.

"Current technologies for addressing CWAs rely on carbon-based materials - but these carbon materials can only adsorb hazardous compounds, they can't degrade them," says Junjie Zhao, a former Ph.D. student at North Carolina State University and lead author of a paper on the work. "Our goal was to develop new materials that can detoxify these CWA compounds, and we've been successful." The CWA degradation research was conducted by researchers in Gregory Parsons' group at NC State, and co-workers at RTI International and the Edgewood Chemical Biological Center.

"Previous research had found that MOFs can be effective at degrading CWAs," Zhao says. "However, MOFs normally come in the form of a powder. We wanted to see if we could grow MOFs as functional coatings onto fibers, so that they could be used in masks, filters and protective garments."

"We think that this demonstration of well-controlled MOF thin films that retain their chemical functionality is an important step for personal security and has implications for many other civilian and commercial uses," adds Parsons, who is Alcoa Professor of Chemical and Biomolecular Engineering at NC State.

The researchers begin by depositing a thin film of onto a fabric made of nanoscale fibers using a vapor-phase technology called atomic layer deposition. The titanium oxide serves as a nucleation layer, which enables the researchers to apply various zirconium-based MOFs onto the nanofibers in an evenly distributed way.

"We found that the MOFs formed on the nanofibers in a kebab-like structure, with the MOFs uniformly covering the entire nanofibers, like meatballs on a skewer," Zhao says.

The researchers then tested the MOF-functionalized fabric against both a CWA simulant and the nerve agent soman. They found that, when exposed to the nano-kebab fabric, the half-life of the CWA simulant was as brief as 7.3 minutes. The half-life of the soman was as short as 2.3 minutes.

"This is a big step forward for materials designed for CWA protection" says Christopher Oldham, a senior research scholar at NC State and co-author of this paper. "The next steps include integration of the MOF-nanofiber kebab structures into currently fielded garment and suit materials, and evaluating the durability of the materials in various conditions. Currently, field chemical suits are heavy and require a lot of energy for the soldier to wear. If we can integrate the MOF-coated nanfibers into outer layers of the chemical suit, inner layers of the suit might be removed. Ultimately this may translate to a suit that potentially behaves and feels more like a piece of athletic wear than a garbage bag."

The paper, "Ultra-Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs," is published in the journal Angewandte Chemie International Edition.

Explore further: A step toward clothing that guards against chemical warfare agents

More information: Junjie Zhao et al, Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201606656

Related Stories

Detecting chemical weapons with a color-changing film

January 28, 2015

In today's world, in which the threat of terrorism looms, there is an urgent need for fast, reliable tools to detect the release of deadly chemical warfare agents (CWAs). In the journal ACS Macro Letters, scientists are reporting ...

Catalyst destroys common toxic nerve agents quickly

March 16, 2015

Northwestern University scientists have developed a robust new material, inspired by biological catalysts, that is extraordinarily effective at destroying toxic nerve agents that are a threat around the globe. First used ...

Recommended for you

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.