

Making it easier to collaborate on code

October 26 2016, by Adam Conner-Simons

“Gitless" removes complicated concepts like "staging" and "stashing," without
fundamentally changing Git's core functionality. Credit: Santiago Perez De
Rosso

Git is an open-source system with a polarizing reputation among
programmers. It's a powerful tool to help developers track changes to
code, but many view it as prohibitively difficult to use.

1/6

To make it more user-friendly, a team from MIT's Computer Science
and Artificial Intelligence Laboratory (CSAIL) has developed "Gitless,"
an interface that fixes many of the system's core problems without
fundamentally changing what it does.

"With Gitless we've developed a tool that we think is easier to learn and
use, but that still keeps the core elements that make Git popular," says
graduate student Santiago Perez De Rosso, who co-wrote a related paper
with MIT Professor Daniel Jackson. "What's particularly encouraging
about this work is that it suggests that the same approach might be used
to improve the usability of other software systems, such as Dropbox and
Google Inbox."

Gitless was developed, in part, by looking at nearly 2,400 Git-related
questions from the popular programming site StackOverflow. The team
then outlined some of Git's biggest issues, including its concepts of
"staging" and "stashing," and proposed changes aimed at minimizing
those problems.

Because Gitless is implemented on top of Git, users can easily switch
between the two without having migrate code from one to the other.
Plus, their collaborators don't even have to know that they aren't big fans
of Git.

Perez De Rosso will present the paper at next month's ACM SIGPLAN
conference on "Systems, Programming, Languages and Applications:
Software for Humanity" in Amsterdam.

How it works

Git is what's called a "version control system." It allows multiple
programmers to track changes to code, including making "branches" of a
file that can be worked on individually.

2/6

Users make changes and then save (or "commit") them so that everyone
knows who did what. If you and a colleague are on version 10 of a file,
and you want to try something new, you can create a separate "branch"
while your friend works on the "master."

Makes sense, right? But things get confusing quickly. One feature of
Gitless is that it eliminates "staging," which lets you save just certain
parts of a file. For example, let's say you have a file with both finished
and unfinished changes, and you'd like to commit the finished changes.
"Staging" lets you commit those changes while keeping the others as a
work-in-progress.

However, having a file with both a staged and working version creates
tricky situations. If you stage a file and make more changes that you then
commit, the version that's committed is the one you staged before, not
the one you're working on now.

Gitless (left) simplifies many of the more complicated concepts that exist in Git.
Credit: Santiago Perez De RossoI

3/6

Gitless essentially hides the staging area altogether, which makes the
process much clearer and less complex for the user. Instead, there's a
much more flexible "commit" command that still allows you to do things
like selecting segments of code to commit.

Another concept that Gitless removes is "stashing." Imagine that you're
in the middle of a project and have to switch to a different branch of it,
but don't yet want to commit your half-done work. Stashing takes the
changes you've made and saves them on a stack of unfinished changes
that you can restore later. (The key difference between stashing and
staging is that, with stashing, changes disappear from the working
directory.)

"The problem is that, when switching branches, it can be hard to
remember which stash goes where," says Perez De Rosso. "On top of
that, stashing doesn't help if you are in the middle of an action like a
merge that involves conflicting files."

Gitless solves this issue by making branches completely independent
from each other. This makes it much easier and less confusing for
developers who have to constantly switch between tasks.

Gitless certainly isn't the first effort to improve Git. But according to
Philip Guo, an assistant professor of cognitive science at the University
of California at San Diego, who was not involved in the project, it is the
first to go beyond Git's interface and actually deal with core conceptual
issues.

"This work applies rigorous software-design research techniques to
uncover shortcomings in one of the world's most widely-used pieces of
software," Guo says. "In the past, many practitioners have made

4/6

anecdotal arguments both for and against Git, but no prior work has
taken a scientific approach to unpacking those arguments."

Results

The team also conducted a user study to test Gitless' performance against
Git. The researchers found that Gitless users were more successful at
completing tasks than Git users, and, for at least one task, performed it
significantly quicker. (Perez De Rosso points out that the study's
participants were all well-versed in Git, and suggest that the results may
have been even more pronounced if the team had tested Gitless on
people with no Git experience.)

In a post-task survey, participants were particularly impressed with
Gitless' ability to transition between branches, which they described as
"very smooth" and "way more intuitive."

Guo describes Gitless as a valuable form of "training wheels" to help
beginner programmers get started with Git. At a higher level, he says
that the team's framework could be an important tool for looking at
other software systems.

Perez De Rosso says that he is particularly excited by the possibility of
analyzing Google Inbox's concept of bundled "conversations," as well as
Dropbox's notion of "shared folders."

"Perhaps the most long-lived contribution of this research is not the
analysis of Git itself, but rather the methodology that the authors used to
analyze, dissect, and redesign a popular piece of software," Guo says.
"The power of the authors' approach to analyzing design flaws can be
applied to many kinds of popular software."

 More information: Purposes, concepts, misfits, and a redesign of git.

5/6

https://phys.org/tags/software+systems/

DOI: 10.1145/2983990.2984018, people.csail.mit.edu/sperezde/ … e-
print-oopsla16.pdf

Towards a theory of conceptual design for software. DOI:
10.1145/2814228.2814248, dl.acm.org/citation.cfm?id=2814248

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: Making it easier to collaborate on code (2016, October 26) retrieved 13 March 2024
from https://phys.org/news/2016-10-easier-collaborate-code.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://dx.doi.org/10.1145/2983990.2984018
http://people.csail.mit.edu/sperezde/pre-print-oopsla16.pdf
http://people.csail.mit.edu/sperezde/pre-print-oopsla16.pdf
http://dx.doi.org/10.1145/2814228.2814248
http://dx.doi.org/10.1145/2814228.2814248
http://dl.acm.org/citation.cfm?id=2814248
http://web.mit.edu/newsoffice/
https://phys.org/news/2016-10-easier-collaborate-code.html
http://www.tcpdf.org

