Video: Zombie vortices in protoplanetary disks and their roles in star and planet formation

September 26, 2016, SETI Institute

The understanding of the early stages of planet formation from a disk of orbiting particles is an ongoing challenge for astrophysics and planetary science. Dr. Marcus will address the importance of instabilities in the particle disk as a link in the planetary formation chain.

Without instabilities, gas around a forming protostar remains in orbit, and the final star cannot form; dust grains cannot accumulate to form planets; and the compositions of meteorites cannot be explained. Unfortunately, the Keplerian motion within a disk is assumed by most astrophysicists to be stable by Rayleigh's theorem because the angular momentum of the disk increases with increasing radius. 

Dr. Marcus will show that there is a new purely hydrodynamic instability that is violent and destabilizes the protoplanetary disk, filling it with turbulence. The essential ingredients of the new instability are rotation, shear, and vertical density stratification, so the instability can occur in stratified Boussinesq (or fully compressible) Couette flows. The new instability occurs at critical layers where neutrally-stable eigenmodes are singular in the inviscid limit (but finite, with a width that scales as the Reynolds number Re to the -1/3 power when viscosity is present) and requires an initial finite-amplitude perturbation. In a flow initialized with weak Kolmogorov noise with initial Mach number Ma, when Ma > Re-1/2 (~10-7 in a ) the instability will be triggered and create turbulence and large-volume and large-amplitude vortices that fill the disk. When the initial perturbation is an isolated vortex, the vortex triggers a new generation of vortices at the nearby critical layers. After this second generation of vortices grows large, it triggers a third generation. The triggering of subsequent generations continues ad infinitum in a self-similar manner creating a 3D lattice of turbulent 3D vortices.

Credit: SETI Institute

Explore further: New theory points to 'zombie vortices' as key step in star formation

Related Stories

Understanding a novel form of turbulence

June 5, 2012

French researchers from CNRS have provided solutions to important problems related to turbulent flow in stratified systems such as the oceans and the atmosphere.

Stellar outburst brings water snowline into view

July 13, 2016

A violent outburst by the young star V883 Orionis has given astronomers their first view of a water "snowline" in a protoplanetary disk - the transition point around the star where the temperature and pressure are low enough ...

ALMA spots possible formation site of icy giant planet

September 14, 2016

Astronomers found signs of a growing planet around TW Hydra, a nearby young star, using the Atacama Large Millimeter/submillimeter Array (ALMA). Based on the distance from the central star and the distribution of tiny dust ...

Recommended for you

Fish-inspired material changes color using nanocolumns

March 20, 2019

Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.