
 

How random is your randomness, and why
does it matter?

September 19 2016, by David Zuckerman And Eshan Chattopadhyay

  
 

  

Credit: AI-generated image (disclaimer)

Randomness is powerful. Think about a presidential poll: A random
sample of just 400 people in the United States can accurately estimate
Clinton's and Trump's support to within 5 percent (with 95 percent
certainty), despite the U.S. population exceeding 300 million. That's just
one of many uses.

1/6

https://sciencex.com/help/ai-disclaimer/


 

Randomness is vital for computer security, making possible secure
encryption that allows people to communicate secretly even if an
adversary sees all coded messages. Surprisingly, it even allows security
to be maintained if the adversary also knows the key used to the encode
the messages.

Often random numbers can be used to speed up algorithms. For
example, the fastest way we know to test whether a particular number is
prime involves choosing random numbers. That can be helpful in math,
computer science and cryptography, among other disciplines.

Random numbers are also crucial to simulating very complex systems.
When dealing with the climate or the economy, for example, so many
factors interact in so many ways that the equations involve millions of
variables. Today's computers are not powerful enough to handle all these
unknowns. Modeling this complexity with random numbers simplifies
the calculations, and still results in accurate simulations.

But it turns out some – even most – computer-generated "random"
numbers aren't actually random. They can follow subtle patterns that can
be observed over long periods of time, or over many instances of
generating random numbers. For example, a simple random number
generator could be built by timing the intervals between a user's
keystrokes. But the results would not really be random, because there are
correlations and patterns in these timings, especially when looking at a
large number of them.

Using this sort of output – numbers that appear at first glance to be
unrelated but which really follow a hidden pattern – can weaken polls'
accuracy and communication secrecy, and render those simulations
useless. How can we obtain high-quality randomness, and what does this
even mean?

2/6

http://www.design-reuse.com/articles/27050/true-randomness-in-cryptography.html
https://math.berkeley.edu/~kpmann/encryption.pdf
https://math.berkeley.edu/~kpmann/encryption.pdf
https://phys.org/tags/random+numbers/
https://www.cs.cmu.edu/~avrim/Randalgs97/lect0319
https://www.cs.cmu.edu/~avrim/Randalgs97/lect0319
http://dx.doi.org/10.1002/wics.1314
http://www.pro-technix.com/information/crypto/pages/rfc1750_base.html
https://crypto.stackexchange.com/questions/18343/true-random-number-generator-by-milliseconds-per-keystroke-trng-kms
https://crypto.stackexchange.com/questions/18343/true-random-number-generator-by-milliseconds-per-keystroke-trng-kms


 

Randomness quality

To be most effective, we want numbers that are very close to random.
Suppose a pollster wants to pick a random congressional district. As
there are 435 districts, each district should have one chance in 435 of
being picked. No district should be significantly more or less likely to be
chosen.

Low-quality randomness is an even bigger concern for computer
security. Hackers often exploit situations where a supposedly random
string isn't all that random, like when an encryption key is generated with
keystroke intervals.

It turns out to be very hard for computers to generate truly random
numbers, because computers are just machines that follow fixed
instructions. One approach has been to use a physical phenomenon a
computer can monitor, such as radioactive decay of a material or 
atmospheric noise. These are intrinsically unpredictable and therefore
hard for a potential attacker to guess. However, these methods are 
typically too slow to supply enough random numbers for all the needs
computers and people have.

There are other, more easily accessible sources of near-randomness, such
as those keystroke intervals or monitoring computer processors' activity.
However, these produce random numbers that do follow some patterns,
and at best contain only some amount of uncertainty. These are low-
quality random sources. They're not very useful on their own.

What we need is called a randomness extractor: an algorithm that takes
as input two (or more) independent, low-quality random sources and
outputs a truly random string (or a string extremely close to random).

3/6

https://cointelegraph.com/news/lack-of-randomness-why-hackers-love-it
http://www.its.bldrdoc.gov/publications/85-173.aspx
https://www.random.org/randomness/
http://dx.doi.org/10.1109/SYNASC.2008.36


 

Constructing a randomness extractor

Mathematically, it is impossible to extract randomness from just one low-
quality source. A clever (but by now standard) argument from
probability shows that it's possible to create a two-source extractor
algorithm to generate a random number. But that proof doesn't tell us
how to make one, nor guarantee that an efficient algorithm exists.

Until our recent work, the only known efficient two-source extractors
required that at least one of the random sources actually had moderately
high quality. We recently developed an efficient two-source extractor
algorithm that works even if both sources have very low quality.

Our algorithm for the two-source extractor has two parts. The first part
uses a cryptographic method called a "nonmalleable extractor" to convert
the two independent sources into one series of coin flips. This allows us
to reduce the two-source extractor problem to solving the a quite
different problem.

Suppose a group of people want to collectively make an unbiased
random choice, say among two possible choices. The catch is that some
unknown subgroup of these people have their heart set on one result or
the other, and want to influence the decision to go their way. How can
we prevent this from happening, and ensure the ultimate result is as
random as possible?

The simplest method is to just flip a coin, right? But then the person who
does the flipping will just call out the result he wants. If we have
everyone flip a coin, the dishonest players can cheat by waiting until the
honest players announce their coin flips.

A middling solution is to let everyone flip a coin, and go with the
outcome of a majority of coin flippers. This is effective if the number of

4/6

http://pages.cs.wisc.edu/~dieter/Courses/2013s-CS880/Scribes/PDF/lecture17.pdf
https://homes.cs.washington.edu/~anuprao/pubs/thesis.pdf
https://homes.cs.washington.edu/~anuprao/pubs/thesis.pdf
http://eccc.hpi-web.de/report/2015/119/
http://eccc.hpi-web.de/report/2015/119/
http://dx.doi.org/10.1137/120868414


 

cheaters is not too large; among the honest players, the number of heads
is likely to differ from the number of tails by a significant amount. If the
number of cheaters is smaller, then they won't be able to affect the
outcome.

Protecting against cheaters

We constructed an algorithm, called a "resilient function," that tolerates
a much larger number of cheaters. It depends on more than just the
numbers of heads and tails. A building block of our function is called the
"tribes function," which we can explain as follows.

Suppose there are 44 people involved in collectively flipping a coin,
some of whom may be cheaters. To make the collective coin flip close to
fair, divide them into 11 subgroups of four people each. Each subgroup
will call out "heads" if all of its members flip heads; otherwise it will say
"tails." The tribes function outputs "heads" if any subgroup says "heads;"
otherwise it outputs "tails."

The tribes function works well if there is just one cheater. This is
because if some other member of the cheater's subgroup flips tails, then
the cheater's coin flip doesn't affect the outcome. However, it works
poorly if there are four cheaters, and if those players all belong to the
same subgroup. For then all of them could output "heads," and force the
tribes function to output "heads."

To handle many cheaters, we build upon work of Miklos Ajtai and Nati
Linial and use many different divisions into subgroups. This gives many
different tribes functions. We then output "heads" if all these tribe
functions output "heads"; otherwise we output "tails." Even a large
number of cheaters is unlikely to be able to control the output, ensuring
the result is, in fact, very random.

5/6

http://dx.doi.org/10.1109/SFCS.1985.55
http://www.cs.huji.ac.il/~nati/PAPERS/ajtai_coalitions.pdf
http://www.cs.huji.ac.il/~nati/PAPERS/ajtai_coalitions.pdf


 

Our extractor outputs just one almost random bit – "heads" or "tails."
Shortly afterwards Xin Li showed how to use our algorithm to output
many bits. While we gave an exponential improvement, other 
researchers have further improved our work, and we are now very close
to optimal.

Our finding is truly just one piece of a many-faceted puzzle. It also
advances an important field in the mathematical community, called
Ramsey theory, which seeks to find structure even in random-looking
objects.

This article was originally published on The Conversation. Read the 
original article.

Source: The Conversation

Citation: How random is your randomness, and why does it matter? (2016, September 19)
retrieved 27 April 2024 from https://phys.org/news/2016-09-random-randomness.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

http://eccc.hpi-web.de/report/2015/125/
http://eccc.hpi-web.de/report/2015/125/
http://eccc.hpi-web.de/report/2016/088/
http://eccc.hpi-web.de/report/2016/114/
http://eccc.hpi-web.de/report/2016/115/
https://simons.berkeley.edu/programs/pseudorandomness2017
http://www.cut-the-knot.org/Curriculum/Combinatorics/ThreeOrThree.shtml
http://theconversation.com
https://theconversation.com/how-random-is-your-randomness-and-why-does-it-matter-59958
https://phys.org/news/2016-09-random-randomness.html
http://www.tcpdf.org

