Nano-lipid particles from edible ginger could improve drug delivery for colon cancer, study finds

September 6, 2016
Credit: Georgia State University

Edible ginger-derived nano-lipids created from a specific population of ginger nanoparticles show promise for effectively targeting and delivering chemotherapeutic drugs used to treat colon cancer, according to a study by researchers at the Institute for Biomedical Sciences at Georgia State University, the Atlanta Veterans Affairs Medical Center and Wenzhou Medical University and Southwest University in China.

Colorectal cancer is the third most common cancer among men and women in the United States, and the second-leading cause of cancer-related deaths among men and women worldwide. The incidence of has increased over the last few years, with about one million new cases diagnosed annually. Non-targeted chemotherapy is the most common therapeutic strategy available for colon cancer patients, but this treatment method is unable to distinguish between cancerous and , leading to poor therapeutic effects on tumor cells and severe toxic side effects on healthy cells. Enabling to target cancer cells would be a major development in the treatment of colon cancer.

In this study, the researchers isolated a specific nanoparticle population from edible ginger (GDNP 2) and reassembled their lipids, naturally occurring molecules that include fats, to form ginger-derived nano-lipids, also known as nanovectors. To achieve accurate targeting of tumor tissues, the researchers modified the nanovectors with to create FA-modified nanovectors (FA nanovectors). Folic acid shows high-affinity binding to the folate receptors that are highly expressed on many tumors and almost undetectable on non-tumor cells.

Credit: Georgia State University

The FA nanovectors were tested as a delivery platform for doxorubicin, a chemotherapeutic drug used to treat colon cancer. The researchers found that doxorubicin was efficiently loaded into the FA nanovectors, and the FA nanovectors were efficiently taken up by cells, exhibited excellent biocompatibility and successfully inhibited tumor growth. Compared to a commercially available option for delivering doxorubicin, the FA nanovectors released the drug more rapidly in an acidic pH that resembled the tumor environment, suggesting this delivery strategy could decrease the severe side effects of doxorubicin. These findings were published in the journal Molecular Therapy.

"Our results show that FA nanovectors made of edible ginger-derived lipids could shift the current paradigm of drug delivery away from artificially synthesized nanoparticles toward the use of nature-derived nanovectors from edible plants," said Dr. Didier Merlin, a professor in the Institute for Biomedical Sciences at Georgia State and a Research Career Scientist at the VA Medical Center. "Because they are nontoxic and can be produced on a large scale, FA nanovectors derived from edible plants could represent one of the safest targeted therapeutic delivery platforms."

Explore further: Lab team spins ginger into nanoparticles to heal inflammatory bowel disease

Related Stories

Nano-Vehicle acts as cluster bomb for tumors

September 18, 2010

Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity, and a battered immune system. Now, a new way to deliver this life-saving therapy to cancer patients ...

Drug-loaded nanocarriers in tumor targeted drug delivery

March 7, 2016

Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. It is a leading cause of death and the burden is expected to grow worldwide due to the growth and aging of the population, ...

Local drug activation at solid tumor sites

July 13, 2016

Sarcoma is an aggressive form of cancer responsible for up to 20 percent of childhood cancers. Tumors often first appear in the extremities and the abdomen. Surgery is a primary treatment, but it often is combined with chemotherapy. ...

Recommended for you

Breakthrough in ultra-fast data processing at nanoscale

October 20, 2017

A research team from the National University of Singapore has recently invented a novel "converter" that can harness the speed and small size of plasmons for high frequency data processing and transmission in nanoelectronics.

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.