Magnetic attraction helps explain the motion under the ocean

September 12, 2016, CORDIS
Magnetic attraction helps explain the motion under the ocean
Credit: CORDIS

The EU GEOPLATE project uses magnetic sensing techniques to expand our understanding of the earth's tectonic past, while also offering tools to help locate future natural resources.

When dating and tracking the evolution of , plate tectonics research usually relies on a combination of knowledge about periods when the polarity of the planet's geomagnetic field was reversed, alongside . After volcanic activity, the ensuing magma cools at the mid-ocean ridge and the minerals contained in the newly forming rock magnetize and align with the direction of planet's magnetic field. These magnetic traces can therefore serve as a date stamp for the crust.

However, the planet's geomagnetic field polarity has actually stayed stable in the past for periods lasting for as long as tens of millions of years (Myr), a timeframe known as a superchron. The ocean floor for these periods, lacking prominent magnetic anomalies, thus presents a challenge when it comes to the creation of accurate plate kinematic models.

Interpreting magnetic wiggles to understand the past

The EU supported GEOPLATE project set out to examine the progression of plate motion during the period known as the Cretaceous normal superchron (CNS, between ~121 and 83 Myr ago). By analyzing oceanic records, the project investigated the geomagnetic field's behaviour to present the first plate kinematic models for the CNS.

The project was able to do so by applying an innovative approach which reconstructed plate movement from evidence left by past fluctuations in the strength of the geomagnetic field. These fluctuations left magnetic traces, described as tiny 'wiggles', which were located using magnetic sensing equipment.

The project results have expanded understanding of a number of continental and oceanic phenomena related to the interaction between surface tectonic plates, mantle convection, and processes, during the long CNS period. For example, it helps explain some of the contributing factors for phenomena such as sea levels which are considered to have been abnormally high during the mid-Cretaceous.

Techniques which could help locate future natural resources

These new kinematic models which GEOPLATE accomplished, contribute to a deeper appreciation of how rates of crustal production and sea floor spreading (resulting from new oceanic crust created by ) influence continental drift and so could help explain the process which resulted in the breakup of the ancient supercontinent Gondwana. Analyzing the marine magnetic records has also resulted in age models that have produced some noteworthy results. For example, GEOPLATE techniques indicated that the oldest oceanic crust in the world is located in the eastern Mediterranean Sea and that it is possibly almost 340 million years-old.

However, as well as deepening our understanding of the past the project also offers tools applicable to the present. We know that past tectonic motion has helped shape the development of the lithosphere, biosphere, hydrosphere, cryosphere, and global climate with important consequences. For instance, by providing insights into the formation of continental marginal basins, GEOPLATE could help researchers locate prospective regions for new mineral and hydrocarbon reservoirs.

Explore further: Researchers uncover 340 million year-old oceanic crust in the Mediterranean Sea using magnetic data

More information: Project website:

Related Stories

Magnetic oceans and electric Earth

October 4, 2016

Oceans might not be thought of as magnetic, but they make a tiny contribution to our planet's protective magnetic shield. Remarkably, ESA's Swarm satellites have not only measured this extremely faint field, but have also ...

New study upends a theory of how Earth's mantle flows

July 6, 2016

A new study carried out on the floor of Pacific Ocean provides the most detailed view yet of how the earth's mantle flows beneath the ocean's tectonic plates. The findings, published in the journal Nature, appear to upend ...

Recommended for you

Arctic wintertime sea ice extent is among lowest on record

March 23, 2018

Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center ...

Germany was covered by glaciers 450,000 years ago

March 23, 2018

The timing of the Middle Pleistocene glacial-interglacial cycles and the feedback mechanisms between climatic shifts and earth-surface processes are still poorly understood. This is largely due to the fact that chronological ...

Wood pellets: Renewable, but not carbon neutral

March 22, 2018

A return to firewood is bad for forests and the climate. So reports William Schlesinger, President Emeritus of the Cary Institute of Ecosystem Studies, in an Insights article published today in the journal Science.

The tradeoffs inherent in earthquake early warning systems

March 22, 2018

A team of researchers with the U.S. Geological Survey and the California Institute of Technology has found that modern earthquake early warning (EEW) systems require those interpreting their messages to take into consideration ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.