

New programming language delivers fourfold
speedups on problems common in the age of
big data

September 13 2016, by Larry Hardesty

Researchers have designed a new programming language that lets application
developers manage memory more efficiently in programs that deal with scattered
data points in large data sets. In tests on several common algorithms, programs
written in the new language were four times as fast as those written in existing
languages. Credit: Christine Daniloff/MIT

1/5

In today's computer chips, memory management is based on what
computer scientists call the principle of locality: If a program needs a
chunk of data stored at some memory location, it probably needs the
neighboring chunks as well.

But that assumption breaks down in the age of big data, now that
computer programs more frequently act on just a few data items
scattered arbitrarily across huge data sets. Since fetching data from their
main memory banks is the major performance bottleneck in today's
chips, having to fetch it more frequently can dramatically slow program
execution.

This week, at the International Conference on Parallel Architectures and
Compilation Techniques, researchers from MIT's Computer Science and
Artificial Intelligence Laboratory (CSAIL) are presenting a new
programming language, called Milk, that lets application developers
manage memory more efficiently in programs that deal with scattered
data points in large data sets.

In tests on several common algorithms, programs written in the new
language were four times as fast as those written in existing languages.
But the researchers believe that further work will yield even larger gains.

The reason that today's big data sets pose problems for existing memory
management techniques, explains Saman Amarasinghe, a professor of
electrical engineering and computer science, is not so much that they are
large as that they are what computer scientists call "sparse." That is, with
big data, the scale of the solution does not necessarily increase
proportionally with the scale of the problem.

"In social settings, we used to look at smaller problems," Amarasinghe
says. "If you look at the people in this [CSAIL] building, we're all
connected. But if you look at the planet scale, I don't scale my number of

2/5

https://phys.org/tags/data/
https://phys.org/tags/big+data/
https://phys.org/tags/electrical+engineering/

friends. The planet has billions of people, but I still have only hundreds
of friends. Suddenly you have a very sparse problem."

Similarly, Amarasinghe says, an online bookseller with, say, 1,000
customers might like to provide its visitors with a list of its 20 most
popular books. It doesn't follow, however, that an online bookseller with
a million customers would want to provide its visitors with a list of its
20,000 most popular books.

Thinking locally

Today's computer chips are not optimized for sparse data—in fact, the
reverse is true. Because fetching data from the chip's main memory bank
is slow, every core, or processor, in a modern chip has its own "cache," a
relatively small, local, high-speed memory bank. Rather than fetching a
single data item at a time from main memory, a core will fetch an entire
block of data. And that block is selected according to the principle of
locality.

It's easy to see how the principle of locality works with, say, image
processing. If the purpose of a program is to apply a visual filter to an
image, and it works on one block of the image at a time, then when a
core requests a block, it should receive all the adjacent blocks its cache
can hold, so that it can grind away on block after block without fetching
any more data.

But that approach doesn't work if the algorithm is interested in only 20
books out of the 2 million in an online retailer's database. If it requests
the data associated with one book, it's likely that the data associated with
the 100 adjacent books will be irrelevant.

Going to main memory for a single data item at a time is woefully
inefficient. "It's as if, every time you want a spoonful of cereal, you open

3/5

the fridge, open the milk carton, pour a spoonful of milk, close the
carton, and put it back in the fridge," says Vladimir Kiriansky, a PhD
student in electrical engineering and computer science and first author
on the new paper. He's joined by Amarasinghe and Yunming Zhang, also
a PhD student in electrical engineering and computer science.

Batch processing

Milk simply adds a few commands to OpenMP, an extension of
languages such as C and Fortran that makes it easier to write code for
multicore processors. With Milk, a programmer inserts a couple
additional lines of code around any instruction that iterates through a
large data collection looking for a comparatively small number of items.
Milk's compiler—the program that converts high-level code into low-
level instructions—then figures out how to manage memory accordingly.

With a Milk program, when a core discovers that it needs a piece of
data, it doesn't request it—and a cacheful of adjacent data—from main
memory. Instead, it adds the data item's address to a list of locally stored
addresses. When the list is long enough, all the chip's cores pool their
lists, group together those addresses that are near each other, and
redistribute them to the cores. That way, each core requests only data
items that it knows it needs and that can be retrieved efficiently.

That's the high-level description, but the details get more complicated. In
fact, most modern computer chips have several different levels of
caches, each one larger but also slightly less efficient than the last. The
Milk compiler has to keep track of not only a list of memory addresses
but also the data stored at those addresses, and it regularly shuffles both
around between cache levels. It also has to decide which addresses
should be retained because they might be accessed again, and which to
discard. Improving the algorithm that choreographs this intricate data
ballet is where the researchers see hope for further performance gains.

4/5

https://phys.org/tags/main+memory/
https://phys.org/tags/main+memory/

"Many important applications today are data-intensive, but
unfortunately, the growing gap in performance between memory and
CPU means they do not fully utilize current hardware," says Matei
Zaharia, an assistant professor of computer science at Stanford
University. "Milk helps to address this gap by optimizing memory access
in common programming constructs. The work combines detailed
knowledge about the design of memory controllers with knowledge
about compilers to implement good optimizations for current hardware."

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: New programming language delivers fourfold speedups on problems common in the age
of big data (2016, September 13) retrieved 1 May 2024 from
https://phys.org/news/2016-09-language-fourfold-speedups-problems-common.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

5/5

https://phys.org/tags/computer+science/
http://web.mit.edu/newsoffice/
https://phys.org/news/2016-09-language-fourfold-speedups-problems-common.html
http://www.tcpdf.org

