Focused light in the Terahertz regime consisting of a broad spectrum of wavelengths

September 30, 2016, Vienna University of Technology
Karl Unterrainer, Sebastian Schönhuber, Michael Krall and Stefan Rotter (l.t.r.). Credit: Vienna University of Technology

Creating Terahertz radiation isn't easy, but it is extremely useful. It can, for example, be used for building chemical sensors to detect certain substances. For this purpose, however, the Terahertz light has to fulfil two important requirements: The light beam must be well focused, and in contrast to normal laser light, which has just one wavelength, it must have a broad spectrum of wavelengths. Combining these two seemingly conflicting requirements in one device has not been accomplished until now. Using an unusual trick, scientists at TU Wien (Vienna) have now presented a Terahertz laser with a well-focused beam and a broad spectrum: they created a laser with randomly located holes in the active laser medium.

Lasers with Built-in Randomness

"In our lab we are working with two different kinds of lasers, which at first glance do not seem to be related at all", says Sebastian Schönhuber. "On the one hand, we build quantum cascade lasers, on the other hand, we have now also focussed our attention on random lasers."

At TU Wien, quantum cascade lasers have been studied for years. They consist of an elaborate structure of thin semiconductor layers. By tuning the properties of this layer system, the wavelengths of the emitted light can be selected. Unfortunately, these quantum cascade lasers do not usually emit radiation into one particular direction, their light cone is extremely wide. Focussing this light and creating a narrow beam is almost impossible.

With so-called "random lasers", a completely different and rather new concept in laser technology, scientists face similar challenges: "Random lasers typically consist of powders or liquids, in which light is created and randomly scattered over and over again", explains Stefan Rotter. The light waves propagate through the laser on complicated disordered paths which can hardly be predicted. This can lead to radiation consisting of many different wavelengths that is being emitted into all directions.

Focused light in the Terahertz regime consisting of a broad spectrum of wavelengths
Random laser with micro-holes. Credit: Vienna University of Technology
Random holes, like in Swiss cheese

Both types of lasers have now been combined in a collaboration of physicists and electrical engineers at TU Wien. At randomly selected positions, tiny holes were drilled into a , turning it into a random laser. The result was surprising at first: the random holes led to a well-focussed beam, shining straight upwards.

"At first, it was not easy to explain this effect", says Martin Brandstetter. "The reason lies in the way the different wavelengths add up to one single beam. Certain frequencies may be emitted in different directions, but if we look at the total intensity of all frequencies combined, almost all the radiation shines into the direction in which the holes were drilled."

This means that now, for the first time, a new kind of laser is available which emits broadband into a well-defined direction – a crucial step towards practical applications of in everyday technology. In a next project the scientists at TU Wien are planning to go one step further: "We want to reach an even larger spectral bandwidth. This should open the door for new and promising applications in spectroscopy as well as in imaging technology using Terahertz radiation", says Sebastian Schönhuber.

The random laser does not emit its radiation into all directions but straight upwards. Credit: Vienna University of Technology

Explore further: Researchers nearly double the continuous output power of a type of terahertz laser

More information: Sebastian Schönhuber et al. Random lasers for broadband directional emission, Optica (2016). DOI: 10.1364/OPTICA.3.001035

Related Stories

Taking the 'random' out of a random laser

July 15, 2013

( —Random Lasers are tiny structures emitting light irregularly into different directions. Scientists at the Vienna University of Technology have now shown that these exotic light sources can be accurately controlled.

The world's most powerful terahertz quantum cascade laser

October 30, 2013

Terahertz radiation has many applications—but high intensity terahertz radiation sources are hard to build. A team of researchers at TU Vienna has now managed to create a new kind of quantum cascade laser with an output ...

Harnessing randomness to improve lasers

January 15, 2014

Randomly arranged items usually have poor optical properties. The rough—or random—surface of a frosted-glass window, for example, obscures the view of an object. The optical industry therefore expends considerable effort ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

How to freeze heat conduction

February 21, 2019

Physicists have discovered a new effect, which makes it possible to create excellent thermal insulators which conduct electricity. Such materials can be used to convert waste heat into electrical energy.

Water is more homogeneous than expected

February 21, 2019

In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases, even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss ...

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.