Discovery could lead to safer, cheaper production of amine-boranes

September 20, 2016 by Curt Slyder, Purdue University

Purdue University researchers have developed a way to produce amine-boranes that promises to be safer and cheaper, and could lead to new uses in medicine, energy storage, rocket propulsion and other technologies.

P.V. Ramachandran, professor of organic chemistry in the Department of Chemistry, and graduate assistant Ameya S. Kulkarni have discovered a way to produce amine-boranes in an open-air environment using cheaper and more plentiful chemicals that have not been used before. The result could provide a safer, cheaper and more plentiful compound, including those not made before, that has a multitude of uses.

The process and one of their applications in is detailed in separate articles by Ramachandran, which appear in a recent issue of Chemical Communications. Links to the articles are available here and here.

Diborane is a pyrophoric gas seldom used as is due to its toxicity and safety issues. Amines, on the other hand, are compounds consisting of a nitrogen atom, Ramachandran said. When amines are combined with borane, the result is non-toxic, air- and moisture-stable amine-boranes.

"Amine-boranes have long been prized for their potential for hydrogen storage," he said.

According to a 2006 report from the U.S. Department of Energy, amine-borane complexes have great potential as a component in fuel sources due to their high hydrogen content. Hydrogen can be used in fuel cells to and other electronic devices and can be used to propel spacecraft.

Producing amine-boranes by conventional methods has several safety concerns.

"Borane dimethyl sulfide, one of the reagents used in the process up to now, if opened to air, reacts with the moisture in the air, releasing hydrogen, a highly flammable gas, which could catch fire; so extreme caution needs to be used. Due to the chemicals and process involved in the reaction, only highly trained people could do the reaction. What we've done is to make that reaction more accessible."

The new method of producing the compound removes many of the dangerous forms of borane and substitutes them with sodium borohydride and sodium bicarbonate (or baking soda), which are less dangerous. That allows water to be used as a reagent, meaning the process can be done in an open-air environment, Ramachandran said.

"This process also leads to higher amounts of amine-boranes being produced," he said.

Since the product is more readily available, it should bring the cost down significantly.

"The new process can also lead to the production of other types of amine-boranes, some of which have not been researched at all, since these materials have not been available in the past," he said. "So it's really up to a chemist's imagination."

Medicines, batteries and rocket propellants are only some of the uses that are possible.

In the companion manuscript published by Ramachandran's group, the application of the simplest of the amine-boranes, ammonia borane, for hydroboration has been described. This builds on the seminal work on hydroboration first noted by the late Purdue Nobel Laureate Herbert C. Brown, which earned Brown the Nobel Prize in Chemistry in 1979. Ramachandran worked with Brown for many years.

Hydroboration refers to the addition of a hydrogen-boron bond to carbon-based bonds.

"Hydroboration gave organic chemists a procedure to make millions of compounds that were more difficult to make otherwise," Ramachandran said. Despite its widespread use, hydroboration utilizes pyrophoric, moisture-sensitive reagents posing a safety risk. The current work from Purdue describes the first open-to-air hydroboration protocol using air- and moisture-stable reagents. "We believe that the ability to carry out hydroboration without the need for inert conditions will have tremendous implications in industry and chemical education," Ramachandran said.

Ramachandran has provisional patents filed through the Purdue Research Foundation's Office of Technology Commercialization and the technology is available for licensing.

Explore further: A new method cuts the cost of drug-building chemicals

More information: P. Veeraraghavan Ramachandran et al. Amine–boranes bearing borane-incompatible functionalities: application to selective amine protection and surface functionalization, Chem. Commun. (2016). DOI: 10.1039/C6CC06031E

P. Veeraraghavan Ramachandran et al. A non-dissociative open-flask hydroboration with ammonia borane: ready synthesis of ammonia–trialkylboranes and aminodialkylboranes, Chem. Commun. (2016). DOI: 10.1039/C6CC06151F

Related Stories

Chemists develop liquid-based hydrogen storage material

November 22, 2011

University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable -- an accomplishment that offers a ...

Palladium-catalyzed C-H activation of primary amino alcohols

November 13, 2015

(Phys.org)—Many synthetic schemes to produce active biomolecules or pharmaceuticals begin with simple starting materials that can serve as a generalizable backbone to several chemical reactions. Ideally, these starting ...

Recommended for you

Asteroids, hydrogen make great recipe for life on Mars

March 26, 2019

A new study reveals asteroid impacts on ancient Mars could have produced key ingredients for life if the Martian atmosphere was rich in hydrogen. An early hydrogen-rich atmosphere on Mars could also explain how the planet ...

Cool Earth theory sheds more light on diamonds

March 26, 2019

A QUT geologist has published a new theory on the thermal evolution of Earth billions of years ago that explains why diamonds have formed as precious gemstones rather than just lumps of common graphite.

New cellulose-based material represents three sensors in one

March 26, 2019

Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity at the same time. The measurements are completely independent of each other. The ability to measure pressure, ...

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.