New cyclotron used for fundamental and applied research in radiopharmaceutical chemistry

September 13, 2016, Universitaet Mainz
The PETtrace 700S cyclotron with closed radiation shield. Credit: photo/©: Stefan F. Sämmer, JGU

A new particle accelerator is further enhancing the research landscape at Johannes Gutenberg University Mainz (JGU). It is to be employed to conduct research into potential applications of medical relevance. The cyclotron was installed in a basement building at the JGU Institute of Nuclear Chemistry in December 2015 and has now been officially put into operation. It will be used to generate isotopes with a short half-life, which are important for fundamental research but are also required for the medical imaging technique known as positron emission tomography (PET). The German Research Foundation (DFG) and the Rhineland-Palatinate Research Initiative funded this research facility worth some EUR 1 million.

The JGU cyclotron is a ring-shaped particle accelerator that occupies an approximate floor space of 7.5 square meters and has a height of some two meters. The accelerator weighs about 50 tonnes and when it was installed in December 2015, a crane had to be used to lower it through a hole in the ceiling into the basement room. Mainz University constructed this new building complex at a cost of around EUR 1.2 million. It is accommodating the cyclotron and includes other facilities containing technical and control equipment plus an air lock. The structure is linked directly to the extension building of the Institute of Nuclear Chemistry and has all safety-relevant features.

As it is able to accelerate protons to an energy of 9.6 mega electron volts (MeV), the cyclotron can be used to generate the two radioactive elements fluorine-18 and carbon-11. These will be mainly employed for chemical and pharmaceutical research purposes but are also required for the PET medical diagnostic imaging technique. F-18 and C-11 have short half-lives of just two hours and 20 minutes, respectively, which makes it necessary to generate them near the location at which they are to be used to ensure that they are available in sufficient quantities. The launch of the new cyclotron means is it now possible to produce C-11-labelled radiopharmaceuticals on site in Mainz.

"The supplements the research infrastructure already in place at Mainz University. Now that we can produce our own radioactive nuclides, we have additional opportunities for our research and development of alternative radiopharmaceuticals," explained Professor Frank Rösch of the JGU Institute of Nuclear Chemistry. "It will significantly facilitate the generation of new radiopharmaceuticals and their preclinical evaluation as well as—working in collaboration with the Department of Nuclear Medicine at the Mainz University Medical Center—potential applications in human medicine." Additional benefits are to be expected through interdisciplinary joint projects in which the disciplines of , pharmacy, organic chemistry, and nuclear medicine at JGU will collaborate with regard to the development and evaluation of new PET radiopharmaceuticals with external institutions, such as the Department of Psychiatry, Psychotherapy and Psychosomatics at RWTH Aachen University and Max Planck Institute for Polymer Research in Mainz.

The cyclotron with open radiation shield shows a view on the targets (left), the magnets and the cyclotron itself (center), and the vacuum system (right). Credit: photo/©: Stefan F. Sämmer, JGU

Explore further: First particles circulate in SuperKEKB accelerator

Related Stories

First particles circulate in SuperKEKB accelerator

April 14, 2016

The SuperKEKB particle accelerator at the KEK research center in Japan has recently reached a major milestone: electrons and positrons have been circulated for the first time around the rings. The accelerator is now being ...

New electron accelerator at JGU reaches first milestone

June 15, 2015

As the production of two superconducting accelerator modules for the future electron accelerator MESA ("Mainz Energy-Recovering Superconducting Accelerator") at Johannes Gutenberg University Mainz (JGU) gets on its way, the ...

Fusion protein controls design of photosynthesis platform

May 13, 2015

Chloroplasts are the solar cells of plants and green algae. In a process called photosynthesis, light energy is used to produce biochemical energy and the oxygen we breathe. Thus, photosynthesis is one of the most important ...

Recommended for you

New fuel cell technology runs on solid carbon

January 22, 2018

Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.