Coastal wildlife more vulnerable to microplastics than expected

September 29, 2016, University of Exeter
Coastal wildlife more vulnerable to microplastics than expected
Fluorescent microplastics in the intestinal tract of the copepod Calanus helgolandicus. Credit: University of Exeter

Coastal dwelling marine wildlife, including crabs, lobsters and shellfish, which play a crucial role in the food chain, are more vulnerable to harmful plastic pollution than previously expected, a new study has found.

The research, conducted by world-leading experts from the University of Exeter and Plymouth Marine Laboratory, determined that the overlap between marine microplastic debris and oceanic life is most prevalent along urbanised coastlines.

Coastal cities represent a major source of plastic pollution. The authors conclude that animals living in waters near densely-populated coastlines will be more at risk of coming into direct contact with microplastic.

Animals can readily ingest microplastics, causing potential harm not just to those animals, but also larger species further up the . The paper highlighted evidence that in consuming microplastics, small, free-floating animals called zooplankton may be instrumental in moving plastics from the ocean surface to the seafloor.

Dr Matt Cole, co-lead author and Natural Environment Research Council (NERC) Associate Research Fellow at the University of Exeter, said: "This vital research highlights that plastics and marine animals are mostly likely to interact in coastal areas. Microscopic plastics are readily consumed by zooplankton; plastics trapped within animals' faeces will sink towards the seafloor, removing the plastic from the ."

The research comes after Environment Secretary Andrea Leadsom announced plans to ban the sale and manufacture of cosmetics and personal care products containing tiny pieces of plastic, commonly known as 'microbeads'.

Now, the research team are calling on more work to be done to tackle plastic pollution around these , and not just in the open ocean. Professor Tamara Galloway, one of the world's foremost experts on microplastics and one of the co-authors of the paper, has been a leading voice in calling for a ban on microbeads in cosmetics, speaking to the United Nations and the Environmental Audit Committee at the Houses of Parliament. The Professor of Ecotoxicology at the University of Exeter said: "Our research is building a better understanding of how microplastics behave in the environment. Now we urgently need to understand what implications this will have for ecosystem health and food security."

The new study, published in the journal Frontiers in Ecology and the Environment, examined existing literature alongside laboratory, field and modelling studies to provide an overview of the current understanding of what happens to microplastics after they enter the ocean, and how they come into contact with

Experts compared data collected about where plastic pollution has been found to date, with where marine life is most likely to live.

Dr James Clark, co-lead author and Marine Ecosystem Modeller at PML, said: "At present there are many unknowns regarding the impact of microplastics in the marine environment which hinders decision making. Within the UK and elsewhere, the technical expertise exists for a world leading, interdisciplinary consortium to be formed which would help fill these knowledge gaps. Such a research effort could provide meaningful advice to policy makers, businesses and members of the general public on how best to manage existing debris levels and to deal with plastic end of use moving into the future."

Marine plastic debris is a major environmental and economic concern. It is estimated that approximately 269,000 tonnes of plastic float at or near the surface of the ocean, posing a risk to marine life, industry and food security.

Microplastics are plastic particles smaller than 5 mm in size, and include microbeads used in exfoliating cosmetics, or form following the breakdown of larger plastic pieces. They enter the ocean as a result of maritime activities or via beaches, rivers and sewage outflows.

Microplastics have been detected across the globe, including the open ocean, polar icecaps, deep-sea sediments and remote mid-oceanic islands far from sources of plastic pollution. Collecting data on the impact of this is challenging, and there is limited knowledge and scientific certainty regarding their impact on the marine environment and society.

Explore further: Plankton feces could move plastic pollution to the ocean depths

More information: James R Clark et al. Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life, Frontiers in Ecology and the Environment (2016). DOI: 10.1002/fee.1297

Related Stories

Microplastics discovered in the deep, open ocean

August 26, 2016

A unique study by scientists at the National Oceanography Centre (NOC) will provide valuable new insights into the concentrations of microplastics in the open ocean from surface to the sea bed.

UK Government announces plans to ban plastic microbeads

September 5, 2016

Fauna & Flora International applauds plans to put a stop to microplastic pollution from cosmetic products and welcomes Government's commitment to look into other industry sources of this unnecessary pollutant.

Beachhopper survival affected by microplastics

September 9, 2016

The interaction of large plastic items with marine animals is well known and documented. However, few studies have explored how microplastics – particles of less than 5mm – changes complex behaviours such as predator ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.