New approach to dynamically tune how a catalyst operates

September 20, 2016 by Sarah Nightingale, University of California - Riverside
Atomic resolution electron microscopy showing the optimization of a carbon dioxide conversion reaction mediated by the catalyst (Rh nanoparticles, NP, on TiO2) and its unique surface interactions (A-SMSI).

The industrial catalysts of the future won't just speed up reactions, they'll control how chemical processes work and determine how much of a particular product is made.

A team of researchers led by Phillip Christopher, assistant professor of chemical and environmental engineering at the University of California, Riverside's Bourns College of Engineering, demonstrated this—as well as how these catalysts look in action—in a paper published Monday, Sept. 19, in the journal Nature Chemistry.

Titled, "Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts," the paper describes a new approach to dynamically tune how a catalyst operates, enabling the researchers to control and optimize the product made in the reaction. The team, which includes scientists from the University of California, Irvine and Columbia University, also used advanced microscopy and spectroscopy approaches to view the catalyst in action on an .

The researchers focused on an important chemical reaction that involves the conversion of carbon dioxide to and . The benefits of this reaction are two-fold: it offers the potential for the removal of harmful carbon dioxide from the atmosphere, and the carbon monoxide and produced can be used as a chemical precursor and fuel, respectively. The team focused on understanding how the catalyst drives the reaction at the atomic scale, which will allow researchers to modify the catalyst's properties to increase efficiency in the reaction.

Christopher said the findings unlock new opportunities for carbon dioxide conversion chemistry, and the dynamic tuning and visualization techniques demonstrated in this research could be replicated in a variety of other important chemical processes.

"The real uniqueness of the paper was being able to observe what was happening at an atomic scale and how physical changes in the catalyst affected the outcome of the conversion reaction. The insights we gained pave the way for the design of more effective processes to produce fuels and chemicals," Christopher said.

Explore further: New catalyst converts carbon dioxide to fuel

More information: John C. Matsubu et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts, Nature Chemistry (2016). DOI: 10.1038/nchem.2607

Related Stories

New catalyst converts carbon dioxide to fuel

July 30, 2014

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

From climate killer to fuels and polymers

July 4, 2016

Researchers have discovered a catalyst that performs highly selective conversion of the greenhouse gas carbon dioxide into ethylene – an important source material for the chemical industry. In the journal Nature Communications, ...

On-surface chemistry leads to novel products

September 13, 2016

On-surface chemical reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. The first-step, second-step, and third-step products can be analyzed in detail using a high-resolution atomic force ...

Recommended for you

Machine learning identifies links between world's oceans

March 21, 2019

Oceanographers studying the physics of the global ocean have long found themselves facing a conundrum: Fluid dynamical balances can vary greatly from point to point, rendering it difficult to make global generalizations.

How fluid viscosity affects earthquake intensity

March 21, 2019

Fault zones play a key role in shaping the deformation of the Earth's crust. All of these zones contain fluids, which heavily influence how earthquakes propagate. In an article published today in Nature Communications, Chiara ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.