
 

User-friendly language for programming
efficient simulations

August 10 2016

Computer simulations of physical systems are common in science,
engineering, and entertainment, but they use several different types of
tools.

If, say, you want to explore how a crack forms in an airplane wing, you
need a very precise physical model of the crack's immediate vicinity. But
if you want to simulate the flexion of an airplane wing under different
flight conditions, it's more practical to use a simpler, higher-level
description of the wing.

If, however, you want to model the effects of wing flexion on the crack's
propagation, or vice versa, you need to switch back and forth between
these two levels of description, which is difficult not only for computer
programmers but for computers, too.

A team of researchers from MIT's Computer Science and Artificial
Intelligence Laboratory, Adobe, the University of California at Berkeley,
the University of Toronto, Texas A&M, and the University of Texas
have developed a new programming language that handles that switching
automatically.

In experiments, simulations written in the language were dozens or even
hundreds of times as fast as those written in existing simulation
languages. But they required only one-tenth as much code as
meticulously hand-optimized simulations that could achieve similar
execution speeds.

1/4

https://phys.org/tags/airplane+wing/


 

"The story of this paper is that the trade-off between concise code and
good performance is false," says Fredrik Kjolstad, an MIT graduate
student in electrical engineering and computer science and first author
on a new paper describing the language. "It's not necessary, at least for
the problems that this applies to. But it applies to a large class of
problems."

Indeed, Kjolstad says, the researchers' language has applications outside
physical simulation, in machine learning, data analytics, optimization,
and robotics, among other areas. Kjolstad and his colleagues have
already used the language to implement a version of Google's original
PageRank algorithm for ordering search results, and they're currently
collaborating with researchers in MIT's Department of Physics on an
application in quantum chromodynamics, a theory of the "strong force"
that holds atomic nuclei together.

"I think this is a language that is not just going to be for physical
simulations for graphics people," says Saman Amarasinghe, Kjolstad's
advisor and a professor of electrical engineering and computer science
(EECS). "I think it can do a lot of other things. So we are very optimistic
about where it's going."

Kjolstad presented the paper in July at the Association for Computing
Machinery's Siggraph conference, the major conference in computer
graphics. His co-authors include Amarasinghe; Wojciech Matusik, an
associate professor of EECS; and Gurtej Kanwar, who was an MIT
undergraduate when the work was done but is now an MIT PhD student
in physics.

Graphs vs. matrices

As Kjolstad explains, the distinction between the low-level and high-
level descriptions of physical systems is more properly described as the

2/4

https://phys.org/tags/computer+science/


 

distinction between descriptions that use graphs and descriptions that use
linear algebra.

In this context, a graph is a mathematical structure that consists of nodes,
typically represented by circles, and edges, typically represented as line
segments connecting the nodes. Edges and nodes can have data
associated with them. In a physical simulation, that data might describe
tiny triangles or tetrahedra that are stitched together to approximate the
curvature of a smooth surface. Low-level simulation might require
calculating the individual forces acting on, say, every edge and face of
each tetrahedron.

Linear algebra instead represents a physical system as a collection of
points, which exert forces on each other. Those forces are described by a
big grid of numbers, known as a matrix. Simulating the evolution of the
system in time involves multiplying the matrix by other matrices, or by
vectors, which are individual rows or columns of numbers.

Matrix manipulations are second nature to many scientists and engineers,
and popular simulation software such as MatLab provides a vocabulary
for describing them. But using MatLab to produce graphical models
requires special-purpose code that translates the forces acting on, say,
individual tetrahedra into a matrix describing interactions between
points. For every frame of a simulation, that code has to convert
tetrahedra to points, perform matrix manipulations, then map the results
back onto tetrahedra. This slows the simulation down drastically.

So programmers who need to factor in graphical descriptions of physical
systems will often write their own code from scratch. But manipulating
data stored in graphs can be complicated, and tracking those
manipulations requires much more code than matrix manipulation does.
"It's not just that it's a lot of code," says Kjolstad. "It's also complicated
code."

3/4



 

Automatic translation

Kjolstad and his colleagues' language, which is called Simit, requires the
programmer to describe the translation between the graphical description
of a system and the matrix description. But thereafter, the programmer
can use the language of linear algebra to program the simulation.

During the simulation, however, Simit doesn't need to translate graphs
into matrices and vice versa. Instead, it can translate instructions issued
in the language of linear algebra into the language of graphs, preserving
the runtime efficiency of hand-coded simulations.

Unlike hand-coded simulations, however, programs written in Simit can
run on either conventional microprocessors or on graphics processing
units (GPUs), with no change to the underlying code. In the researchers'
experiments, Simit code running on a GPU was between four and 20
times as fast as on a standard chip.

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: User-friendly language for programming efficient simulations (2016, August 10)
retrieved 27 April 2024 from
https://phys.org/news/2016-08-user-friendly-language-efficient-simulations.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

4/4

http://web.mit.edu/newsoffice/
https://phys.org/news/2016-08-user-friendly-language-efficient-simulations.html
http://www.tcpdf.org

