New electrical energy storage material shows its power

August 24, 2016, Northwestern University
A conductive polymer (green) formed inside the small holes of a hexagonal framework (red and blue) work together to store electrical energy rapidly and efficiently. Credit: William Dichtel, Northwestern University

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

An electric car currently relies on a complex interplay of both batteries and supercapacitors to provide the energy it needs to go places, but that could change.

"Our material combines the best of both worlds—the ability to store large amounts of or charge, like a battery, and the ability to charge and discharge rapidly, like a supercapacitor," said Dichtel, a pioneer in the young research field of (COFs).

Dichtel and his research team have combined a COF—a strong, stiff polymer with an abundance of tiny pores suitable for storing energy—with a very conductive material to create the first modified redox-active COF that closes the gap with other older porous carbon-based electrodes.

"COFs are beautiful structures with a lot of promise, but their conductivity is limited," Dichtel said. "That's the problem we are addressing here. By modifying them—by adding the attribute they lack—we can start to use COFs in a practical way."

And modified COFs are commercially attractive: COFs are made of inexpensive, readily available materials, while carbon-based materials are expensive to process and mass-produce.

A Northwestern University chemist and his research team have developed a modified covalent organic framework (COF) material that can power a light-emitting diode. Credit: American Chemical Society

Dichtel, the Robert L. Letsinger Professor of Chemistry at the Weinberg College of Arts and Sciences, is presenting his team's findings today (Aug. 24) at the American Chemical Society (ACS) National Meeting in Philadelphia. Also today, a paper by Dichtel and co-authors from Northwestern and Cornell University was published by the journal ACS Central Science.

To demonstrate the new material's capabilities, the researchers built a coin-cell battery prototype device capable of powering a light-emitting diode for 30 seconds.

The material has outstanding stability, capable of 10,000 charge/discharge cycles, the researchers report. They also performed extensive additional experiments to understand how the COF and the , called poly(3,4-ethylenedioxythiophene) or PEDOT, work together to store electrical energy.

Dichtel and his team made the material on an electrode surface. Two organic molecules self-assembled and condensed into a honeycomb-like grid, one 2-D layer stacked on top of the other. Into the grid's holes, or pores, the researchers deposited the conducting polymer.

A Northwestern University chemist and his research team have developed a modified covalent organic framework (COF) material that can power a light-emitting diode. Credit: American Chemical Society

Each pore is only 2.3 nanometers wide, but the COF is full of these useful pores, creating a lot of surface area in a very small space. A small amount of the fluffy COF powder, just enough to fill a shot glass and weighing the same as a dollar bill, has the surface area of an Olympic swimming pool.

The modified COF showed a dramatic improvement in its ability to both store energy and to rapidly charge and discharge the device. The material can store roughly 10 times more electrical energy than the unmodified COF, and it can get the electrical charge in and out of the device 10 to 15 times faster.

"It was pretty amazing to see this performance gain," Dichtel said. "This research will guide us as we investigate other modified COFs and work to find the best materials for creating new electrical energy storage devices."

Explore further: Organic 2-D films could lead to better solar cells

More information: Catherine R. Mulzer et al, Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework, ACS Central Science (2016). DOI: 10.1021/acscentsci.6b00220

Related Stories

Organic 2-D films could lead to better solar cells

April 12, 2011

(PhysOrg.com) -- Solar cells made from organic materials are inexpensive, lightweight and flexible, but their performance lags behind cells that contain silicon or other inorganic materials. Cornell chemist William Dichtel ...

New molecular framework could lead to flexible solar cells

June 29, 2010

(PhysOrg.com) -- Making better solar cells: Cornell University researchers have discovered a simple process - employing molecules typically used in blue jean and ink dyes - for building an organic framework that could lead ...

Recommended for you

Engineers test drug transfer using placenta-on-a-chip

February 16, 2018

Researchers at the University of Pennsylvania's School of Engineering and Applied Science have demonstrated the feasibility of their "organ-on-a-chip" platform in studying how drugs are transported across the human placental ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (2) Aug 25, 2016
Unfortunately the attached paper doesn't give any energy density measures. Would have been nice to see how this compares to other types of batteries. It says it stores 10 times as much as regular COFs but I couldn't find any values for those, either. Anyone have any numbers for this?
tinitus
Aug 25, 2016
This comment has been removed by a moderator.
tinitus
Aug 25, 2016
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.