Colors from darkness: Researchers develop alternative approach to quantum computing

August 30, 2016, Aalto University
Artistic depiction of the generation of three correlated photons from quantum vacuum. Credit: Antti Paraoanu

Researchers at Aalto University have demonstrated the suitability of microwave signals in the coding of information for quantum computing. Previous development of the field has been focusing on optical systems.

Researchers used a microwave resonator based on extremely sensitive measurement devices known as superconductive interference devices (SQUIDs). In their studies, the resonator was cooled down and kept near absolute zero, where any thermal motion freezes. This state corresponds to perfect darkness where no photon - a real particle of electromagnetic radiation such as visible light or microwaves - is present.

However, in this state (called quantum vacuum) there exist fluctuations that bring photons in and out of existence for a very short time. The researchers have now managed to convert these fluctuations into real photons of microwave radiation with different frequencies, showing that, in a sense, darkness is more than just absence of light.

They also found out that these photons are correlated with each other, as if a magic connection exists between them.

'With our experimental setup we managed to create complex correlations of in a controlled way,' says Dr Pasi Lähteenmäki, who performed the research during his doctoral studies at the Low Temperature Laboratory of Aalto University.

'This all hints at the possibility of using the different frequencies for quantum computing. The photons at different frequencies will play a similar role to the registers in classical computers, and logical gate operations can be performed between them,' says Doc. Sorin Paraoanu, Senior University Lecturer and one of the co-authors of the work.

The results provide a new approach for .

'Today the basic architecture of future quantum computers is being developed very intensively around the world. By utilizing the multi-frequency microwave signals, an alternative approach can be pursued which realizes the logical gates by sequences of quantum measurements. Moreover, if we use the created in our resonator, the physical quantum bits or qubits become needless,' explains Professor Pertti Hakonen from the Low Temperature Laboratory of Aalto University.

These experiments utilized the OtaNANO infrastructure and the niobium superconducting technology of the Technical Research Centre of Finland (VTT). This work was done under the framework of the Centre of Quantum Engineering at Aalto University.

Explore further: New single-photon microwave source developed

More information: Pasi Lähteenmäki et al, Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity, Nature Communications (2016). DOI: 10.1038/ncomms12548

Related Stories

New single-photon microwave source developed

August 25, 2016

A collaboration including researchers at the National Physical Laboratory (NPL) has developed a tuneable, high-efficiency, single-photon microwave source. The technology has great potential for applications in quantum computing ...

Light particles illuminate the vacuum

February 26, 2013

Researchers from the Finnish Aalto University and the Technical Research Centre of Finland succeeded in showing experimentally that vacuum has properties not previously observed. According to the laws of quantum mechanics, ...

New record in microwave detection

July 8, 2016

The record was made using a partially superconducting microwave detector. The discovery may lead to ultrasensitive cameras and accessories for the emerging quantum computer.

Quantum processor for single photons

July 7, 2016

"Nothing is impossible!" In line with this motto, physicists from the Quantum Dynamics Division of Professor Gerhard Rempe (director at the Max Planck Institute of Quantum Optics) managed to realise a quantum logic gate in ...

Researchers use quantum dots to manipulate light

August 30, 2016

Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, this has only been accomplished with actual atoms. It is an important step toward light-based quantum technology. The study ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.