

Smallest hard disk to date writes information atom by atom

July 18 2016

		18 N N N N	8992	289.64		9248993
ve e			128			
X,800,886			12 M.			
				9899 - 69889 	- 1999 (1999) * 1997 - Xunar	
	10000 00000 10000 10772	200000 00000 200000 200000				
ý 🏥 🚟	電公					
	* contra tentin	1000 1000			1999 (1995	Yes CXX
	87 B					
	.	***(`##	r en de		`## `##	`## `\\\
	影響					
WW-III					×:	
						.E.M
NY ADDIA ADDIA Ny ADDIA ADDIA	Testes Colles Testes Testes	**************************************	: (200000) : (200000)			
× 1995 1999	Service Service	1999 1999				$\cong $
						`m"%"
226) e						
					, QB (BB (BB)	
					all the	

STM scan (96 nm wide, 126 nm tall) of the 1 kB memory, written to a section of

'On the Origin of Species' by Charles Darwin (without text markup). Credit: Ottelab/TUDelft

Every day, modern society creates more than a billion gigabytes of new data. To store all this data, it is increasingly important that each single bit occupies as little space as possible. A team of scientists at the Kavli Institute of Nanoscience at Delft University reduced storage to the ultimate limit: They stored one kilobyte (8,000 bits) representing each bit by the position of a single chlorine atom. "In theory, this storage density would allow all books ever created by humans to be written on a single post stamp," says lead scientist Sander Otte. They reached a storage density of 500 Terabits per square inch (Tbpsi), 500 times better than the best commercial hard disk currently available.

His team reports on this development in *Nature Nanotechnology* on Monday July 18.

Feynman

In 1959, physicist Richard Feynman challenged his colleagues to engineer the world at the smallest possible scale. In his famous lecture There's Plenty of Room at the Bottom, he speculated that if we had a platform allowing us to arrange <u>individual atoms</u> in an exact orderly pattern, it would be possible to store one piece of information per atom. To honor the visionary Feynman, Otte and his team coded a section of Feynman's lecture on an area 100 nanometers wide.

Sliding puzzle

The team used a scanning tunneling microscope (STM), which uses a sharp needle to probe the atoms of a surface one by one. Scientists can

use these probes to push the atoms around. "You could compare it to a sliding puzzle," Otte explains. "Every bit consists of two positions on a surface of <u>copper atoms</u>, and one chlorine atom that we can slide back and forth between these two positions. If the chlorine atom is in the top position, there is a hole beneath it—we call this a one. If the hole is in the top position and the chlorine atom is on the bottom, then the bit is a zero." Because the chlorine atoms are surrounded by other chlorine atoms, except near the holes, they keep each other in place. That is why this method with holes is much more stable than methods with loose atoms, and more suitable for data storage.

State States	18118344		10.569,352	908/200	00. 30° 60. 20
But I am not afr	aid to c onsider	the fina I ques	ti on as to	whether , ultima	tely - i n the gr
1676-06 Beer				teren cette	
			1929) BBB		
Weather and		alling the	1978/ teta	- title titlet	and show of Al
eat futu	re - we can arra	nge the atoms	th e way we want; t	he very atoms, a	If the world ay down!
22. Bad (s.25)				2000 2000	SHE SHE 1993
1.					adda dada (2004)
What wo uld happ	en if we could a	rrange t he aton	is one by one the	×	way we want them
day toom totad	and the second		a diter diter	199 41 20	
				NYYYYY.	2000 0000 P///
191 kadan kanan	100100 (10000)	. C.C.C. (C.C.)	ut them s 🗙 📖	W. S. S. S.	hey are chemical
(within reason,		se, you can t	e Nepher 🔭 💯 🖉	*// // brann	
97, 1999, 1999, Ne	1998 (A.C.			2012 BBB	899 898 MX 2
17 COSC 2000	- 2008 - 20A - 3		n diada (A S	New Block	and are part
ly unsta ble, for	example	e). Up to now, v	we have be en conte	ent to di g in the	ground to find
28 millio tipoti	aldin tilli	align sign			1000 Billion (VIA)
AY 1992 1993	((x), (5))				200 CO 1469
M total total	168 j (0900	jandi) kask			atom atom 2003
minerals . We hea	× // Tapac	*	do things on a lar	ge scale with th	ent, and we nope
	1400 BBB				
A sin har	2.00 M (1999)				1999 1993 (MA)
to get a	pure su bstance	with jus	🗙 t so muo	: h impuri x	ty, and so on. B
N. 1. 1. 1. 1990				1995 1976	Bank Blen MAA
1.2.80 833	tighte tighte				2000 0000 1/2
ut we mu, st alway.	s accent some a	amic arr engem	ent that na ture giv	esus Wie haven'	t got an wything
Ale toola toola	Tapilla (CCCC)				
of 1966 1985					200 220 220
() 2003 BAB					2003 1928 - C/A
say, wit h a "che	ckerboar d'' arran	gement, with th	ie impurit yatoms	exactly arranged	1,000 a ngstroms
apart. or in so	me other particu	lar pattern. Ti	ne re's ple ntv of r	oom at t he botto	m. R. P. Feynman
A 10000 10000	1::::::: 1:::::::	Chang Sain	a testa teapa		HAR DEEL 240
S: 220 200	Sector and the		·		abas sindi - 220
Six Halls Come					
Decemb	er 29th	1959.		·	`
Carlle Stat	QQ. 888			******** ********	
(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	16.6 222				
AND AND ADDRESS	free and		· · · · · ·	******** ********	
2000 (C. 1997)					
NY STATIST	2757227	2,780,08.4	Section in	No martine	a Section (
A CONTRACT	2000/200	16 11 8 19	1000000	SUSTAN.	and the state

STM scan (96 nm wide, 126 nm tall) of the 1 kB memory, written to a section of

'There is plenty of room at the bottom' by Richard Feynman (with text markup). Credit: Ottelab/TUDelft

Codes

The researchers from Delft organized their memory in blocks of eight bytes (64 bits). Each block has a marker, made of the same type of holes as the raster of chlorine atoms. Inspired by the pixelated square barcodes (QR codes) often used to scan tickets for airplanes and concerts, these markers work like miniature QR codes that carry information about the precise location of the block on the copper layer. The code will also indicate if a block is damaged—for instance, due to some local contaminant or an error in the surface. This allows the memory to be scaled up easily to very large sizes, even if the copper surface is not entirely perfect.

Explanation of the bit logic and the atomic markers. Credit: Ottelab/TUDelft

Datacenters

The new approach offers excellent prospects in terms of stability and scalability. Still, this type of memory should not be expected in datacenters soon. Otte: "In its current form, the memory can operate only in very clean vacuum conditions and at liquid nitrogen temperature (77 K), so the actual storage of data on an atomic scale is still some way off. But through this achievement we have certainly come a big step closer."

More information: A kilobyte rewritable atomic memory, *Nature Nanotechnology*, <u>dx.doi.org/10.1038/nnano.2016.131</u>

Provided by Delft University of Technology

Citation: Smallest hard disk to date writes information atom by atom (2016, July 18) retrieved 3 May 2024 from <u>https://phys.org/news/2016-07-smallest-hard-disk-date-atom.html</u>

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.