Researchers make leap in measuring quantum states

July 21, 2016, RMIT University
The unknown quantum state is shown as a red dot on the Bloch sphere. The algorithm estimates the gradient performing measurements with the green and purple projectors, updates the current estimate of the state (red line), and repeats until the desired accuracy is achieved. Credit: RMIT University

A breakthrough into the full characterisation of quantum states has been published today as a prestigious Editors' Suggestion in the journal Physical Review Letters.

The full characterisation (tomography) of quantum states is a necessity for future . However, standard techniques are inadequate for the large quantum bit-strings necessary in full scale quantum computers.

A research team from the Quantum Photonics Laboratory at RMIT University and EQuS at the University of Sydney has demonstrated a new for quantum tomography—self-guided quantum tomography—which opens future pathways for characterisation of large quantum states and provides robustness against inevitable system noise.

Dr Alberto Peruzzo, Director of the Quantum Photonics Laboratory, said: "This is a big step forward in quantum tomography. Our technique can be applied to all quantum computing architectures in laboratories around the world."

"Characterising quantum states is a serious bottleneck in . Self-guided quantum tomography uses a search algorithm to iteratively 'find' the .

"This technique significantly reduces the necessary resources by removing the need for any data storage or post-processing."

Robert Chapman, lead author and RMIT PhD student, said the technique employed was far more robust against inevitable noise and experimental errors than standard techniques.

"We experimentally characterise quantum states encoded in single photons—single particles of light.

"Photons are a strong candidate for future quantum computing, however, our method can be applied to other quantum computing architectures, such as ion traps and superconducting qubits.

"Any experiment suffers from measurement noise which degrades results. In our experiment, we engineer the level of noise up to extreme levels to test the performance of our algorithm. We show that self-guided quantum tomography is significantly more robust against noise than standard tomography.

"We hope research groups can employ our technique as a tool for characterising large quantum states and benefit future quantum technologies."

The research, "Experimental demonstration of self-guided quantum tomography", has been published in Physical Review Letters and can be accessed online.

Explore further: Quantum computing closer as researchers drive towards first quantum data bus

Related Stories

Researchers find new way to control quantum systems

May 4, 2016

Researchers from the Department of Applied Mathematics and the Institute for Quantum Computing at the University of Waterloo have developed a versatile new way of controlling quantum systems that can affect the reliability ...

Recommended for you

The subtle science of wok tossing

November 19, 2018

Wok tossing is essential for making a good fried rice—or so claim a group of researchers presenting new work at the American Physical Society's Division of Fluid Dynamics 71st Annual Meeting, which will take place Nov. ...

Making X-ray microscopy 10 times faster

November 19, 2018

Microscopes make the invisible visible. And compared to conventional light microscopes, transmission x-ray microscopes (TXM) can see into samples with much higher resolution, revealing extraordinary details. Researchers across ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.