
 

Researchers chip away at Smale's 7th
unsolved problem in mathematics
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The disconnectivity graph for 147 charges on a sphere has a structure-seeking
“palm tree” organization. The five lowest minimum energy configurations are
shown. Credit: Mehta et al. ©2016 American Physical Society

(Phys.org)—How do you arrange a group of points on the surface of a
sphere so that all the points are as far apart from each other as possible?
With two points, the answer is easy: place them on opposite sides of the
sphere, as if they are endpoints of the diameter. With three points, make
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them the vertices of an equilateral triangle, and so on. But as the number
of points increases, so does the difficulty of the problem.

This puzzle is the essence of Thomson's problem, which asks how to
arrange equal charges (such as electrons) on the surface of a sphere in a
way that minimizes their electrostatic potential energy—the energy
caused by all of the electrons repelling each other. According to
Coulomb's law, the total energy is inversely related to the sum of the
distances between all possible pairs of charges, so the goal is to spread
the charges as far apart as possible.

This task is more difficult than it sounds—Thomson's problem has been
rigorously solved only for numbers of 2, 3, 4, 6, and 12 charges. In 1998,
mathematician Steven Smale identified the problem of how to choose
starting points close to the lowest-energy state (which makes it easier to
solve Thomson's problem) as the seventh problem on his list of 18
unsolved problems for the 21st century.

Part of the reason why Thomson's problem is so important is because its
applications are so far-reaching. In 1904, J.J. Thomson originally
proposed the model of charges on a sphere to describe the structure of
an atom. Even though experiments disproved this "plum pudding model"
long ago, the Thomson problem still has notable applications in
chemistry (for understanding how electrons fill electron shells in atoms),
biology (for determining the arrangements of proteins on the shells of
spherical viruses), as well as in physics, computer science, and such
practical applications as determining the optimal placement of
communication satellites around the Earth.

Spheres on trees

Now in a new paper published in Physical Review Letters, a team of
mathematicians, engineers, and scientists from the US, the UK, and
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Australia has taken a new approach to Thomson's problem that makes it
much easier to determine the lowest-energy configuration. For seven
numbers of charges (every third number from 132 to 150), they have
constructed tree-shaped disconnectivity graphs, where the vertical axis or
"trunk" corresponds to the energy of a particular charge arrangement.
Each "branch" terminates at a local minimum, which are the states that
have lower energies than all of their neighboring states, and so they are
candidates for the ultimate lowest energy state, the global minimum.

By visualizing the problem in this way, the researchers noticed that these
particular graphs don't have lots of branches extending from lots of other
branches. Instead, every branch connects to only a few other branches
and then to the trunk at regularly spaced energy thresholds, so that the
graph resembles a palm tree or single funnel structure.

The researchers found that this "funneled potential energy landscape" is
characteristic of a highly ordered structure and displays characteristics
of a small-world network. As a result, it provides an important clue for
finding the global minimum. It tells the researchers to start their
optimization algorithms using the local minima because, in these
networks, it turns out that every local minimum is always within 5-7
steps (branches) of the global minimum. This is true even for local
minima that have much higher energies than the global minimum, and
even when the total number of local minima is very large.
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By visualizing the problem from a new perspective, the researchers found that
lower-energy configurations have more connections than higher-energy
configurations do. Credit: Mehta et al. ©2016 American Physical Society

The disconnectivity graph reveals other information, such as that lower-
energy local minima have more connections to other states than do
higher-energy local minima. The researchers also discovered that the
global minimum is always the most highly connected node in the entire
network, making it the network's central node.

Implications for Thomson's and Smale's problems

Using this insight from the network's single-funneled, small-world
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structure, finding the global minimum for Thomson's problem becomes
much easier than before.

"Our work looks at Smale's seventh problem from a completely different
perspective and sheds novel light on it," coauthor Dhagash Mehta, at the
University of Notre Dame and the University of Adelaide, told Phys.org.
"In this work, methods developed by the theoretical chemistry
community have helped understand a deep mathematical problem. Often
it is the other way around."

As the researchers explain, it's easier to solve Thomson's problem in
these particular cases than it is to solve Smale's problem (of choosing
good starting points). So although the results will likely be useful, they
do not go very far toward solving Smale's seventh problem.

"I think 'chip away' is about right," said coauthor David Wales at
University Chemical Laboratories in Cambridge, UK. "There is no
rigorous mathematical progress on the problem from an analytic point of
view."

In the future, the researchers plan to extend this approach to larger
numbers of charges. From earlier work, they expect that landscapes with
more than 400 charges will start to display multiple funnels, so the small-
world structure may disappear.

"While we have only shown data for seven numbers, we have strong
reasons to believe that the single funnel is a feature for numbers less than
150," said coauthor Halim Kusumaatmaja at Durham University in
Durham, UK. "For larger numbers, there will likely be multiple funnels.
Nonetheless, the network analysis could still be exploited to help us
quickly identify candidates for the global minimum."

Other lines of work include exploiting the small-world properties
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discovered here to improve other optimization algorithms and develop
novel algorithms, as well as to incorporate weight and direction into
these networks, which may provide additional insight into the Thomson
problem.

"The social network analogy for networks of minima of the Thomson
problem will go further when we analyze other network properties of
these networks of minima," Mehta said. "Our results will also help in
constructing novel algorithms to find the global minimum more
efficiently by exploiting these network properties."

  More information: Dhagash Mehta et al. "Kinetic Transition
Networks for the Thomson Problem and Smale's Seventh Problem." 
Physical Review Letters. DOI: 10.1103/PhysRevLett.117.028301 , Also
at arXiv:1605.08459 [cond-mat.soft]
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