Scientists confirm reprogrammed adult stem cells identical to embryonic stem cells

June 13, 2016
iPS cells features. Credit: Moscow Institute of Physics and Technology

Researchers from the Vavilov Institute of General Genetics, Research Institute of Physical Chemical Medicine and Moscow Institute of Physics and Technology (MIPT) have concluded that reprogramming does not create differences between reprogrammed and embryonic stem cells. The results have been published in the journal Cell Cycle.

Stem cells are specialized, that can divide and have the remarkable potential to develop into many different cell types in the body during early life and growth. In addition, they serve as a sort of internal repair system in many tissues, dividing essentially without limit to replenish other cells. When a stem cell divides, each new cell has the potential either to remain a stem cell or become another a more specialized cell type, such as a muscle cell, a red blood cell, or a brain cell (Fig 1). Scientists distinguish several types of . Stem cells that can potentially produce any cell in the body are called pluripotent stem cells. There are no pluripotent stem cells in an adult body; they are found naturally in early embryos.

There are two ways to get pluripotent stem cells. The first is to extract them from the excess embryos produced during the in vitro fertilization procedure. But this practice is still controversial technically and ethically because it does destroy an embryo which could have been implanted. This is why researchers came up with the second way to get pluripotent stem cells – reprogramming adult cells.

The process of "turning on" genes that are active in a stem cell and "turning off" genes that are responsible for cell specialization is called reprogramming. This technology was pioneered by Shinya Yamanaka, who showed that the introduction of four specific proteins that are essential during early embryonic development could be used to convert adult cells into . He was awarded the 2012 Nobel Prize along with Sir John Gurdon "for the discovery that mature cells can be reprogrammed to become pluripotent."(Fig.2).

Thanks to their unique regenerative abilities, stem cells offer potential for treating any disease. For example, there have been cases of transplanting retinal pigment epithelium and spine cells from stem cells. Another experiment showed that stem cells were able to regenerate teeth in mice. Reprogramming holds great potential for new medical applications, because reprogrammed pluripotent stem cells (or induced pluripotent stem cells) can be made from a patient's own cells instead of using pluripotent cells from embryos.

However, the extent of the similarity between induced pluripotent stem cells and human is still unclear. Recent studies highlighted significant differences between these two types of stem cells, although only a limited number of cell lines of different origins were analyzed.

Production of iPS cells. Credit: Moscow Institute of Physics and Technology

Researchers compared induced pluripotent stem cells lines reprogrammed from adult cell types that have been previously differentiated from embryonic stem cells. All these cells were isogenic, which means they all had the same gene set.

Scientists analyzed the transcriptome – the set of all products encoded, synthesized and used in a cell. Moreover, they elicited methylated DNA areas, because methylation plays a critical role in cell specialization. Thorough study of changes in the gene activity regulation mechanism showed that reprogrammed and embryonic stem cells are similar. In addition, researchers came up with a list of the activity of 275 key genes that can present reprogramming results.

Researchers analyzed three types of adult cells – fibroblasts, retinal pigment epithelium and . All of them consist of the same gene set, but a chemical modification (e.g. methylation) combined with other changes determines which part of DNA will be used for product synthesis.

The type of adult cells that were reprogrammed and the process of reprogramming did not leave any marks, concluded scientists. Differences between cells that did occur were thought to be the impact of random factors. "We defined the best induced pluripotent stem cells line concept. The minimum number of iPSC clones that would be enough for at least one to be similar to embryonic pluripotent cells with 95 percent confidence is five," says Dmitry Ischenko, MIPT PhD and Institute of Physical Chemical Medicine researcher.

Clearly, no one is going to convert embryonic stem cells into neurons and reprogram them into induced stem cells – that would be too time-consuming and expensive. This experiment simulated the reprogramming of a patient's into induced for further medical use. Even though this paper does not propose a method of organ growth in vitro for now, it is an important step in the right direction. Both induced pluripotent cells and embryonic stem cells can help us understand how specialized cells develop from pluripotent cells. In the future, they might also provide an unlimited supply of replacement cells and tissues for many patients with diseases that are currently untreatable.

Explore further: Scientists discover a new kind of stem cell

More information: Maria V. Shutova et al. An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion, Cell Cycle (2016). DOI: 10.1080/15384101.2016.1152425

Related Stories

Scientists discover a new kind of stem cell

March 3, 2016

Scientists at Michigan State University have discovered a new kind of stem cell, one that could lead to advances in regenerative medicine as well as offer new ways to study birth defects and other reproductive problems.

Research advance may lead to new treatments for glaucoma

March 22, 2016

Researchers have developed a tool to not only model the underlying disease mechanisms of glaucoma, but also to help discover and test new pharmacological strategies to combat the neurodegeneration that occurs in patients ...

How to detect and preserve human stem cells in the lab

January 22, 2016

Human stem cells that are capable of becoming any other kind of cell in the body have previously only been acquired and cultivated with difficulty. Scientists at the Max Delbrück Center for Molecular Medicine (MDC) in the ...

Recommended for you

New discovery challenges long-held evolutionary theory

October 19, 2017

Monash scientists involved in one of the world's longest evolution experiments have debunked an established theory with a study that provides a 'high-resolution' view of the molecular details of adaptation.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.