Scientists detect most distant signs of oxygen in the universe

June 16, 2016, National Institutes of Natural Sciences
Light from ionized oxygen detected by ALMA is shown in green. Light from ionized hydrogen detected by the Subaru Telescope and ultraviolet light detected by the UK Infrared Telescope (UKIRT) are shown in blue and red, respectively. Credit: ALMA (ESO/NAOJ/NRAO), NAOJ

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) detected a clear signal from oxygen in a galaxy located 13.1 billion light-years away from us. This is the most distant oxygen ever detected. Oxygen in this galaxy seems to be ionized by a number of young giant stars, and this detection is a key step to understand the enigmatic "cosmic reionization" in the early history of the Universe. These observations have opened a new window to probe the early Universe with ALMA.

The team observed SXDF-NB1006-2, a galaxy 13.1 billion light-years away, with ALMA. This galaxy was discovered in 2012 by the Subaru Telescope operated by National Astronomical Observatory of Japan (NAOJ) and the following observations with Keck Observatory showed that it was the most distant galaxy known at that time. The Subaru Telescope detected light from ionized hydrogen, but the team aimed to detect light from ionized oxygen and dust particles with ALMA.

"Seeking heavy elements in the early Universe is an essential approach to explore the activity in that period," said Akio Inoue at Osaka Sangyo University, Japan, the lead author of the research paper which will be published online by the journal Science on Thursday, June 16, 2016.

Various elements are found around us in the present Universe, but just after the Big Bang 13.8 billion years ago only the lightest elements, hydrogen, helium, and lithium, existed. Heavier elements, such as carbon and oxygen, have been formed in stars and accumulated in the Universe over time.

"Studying heavy elements also gives us a hint to understand how the were formed and what caused the cosmic reionization," added Inoue.

Many young bright stars are located in the galaxy and ionize the gas inside and around the galaxy. Green color indicates the ionized oxygen detected by ALMA, whereas purple shows the distribution of ionized hydrogen detected by the Subaru Telescope. Credit: NAOJ

Before the first formed, the Universe was filled with electrically neutral gas. Celestial objects emitted strong radiation and started to ionize the neutral gas a few hundred million years after the Big Bang. This is known as "cosmic reionization." The state of the whole Universe changed dramatically in the cosmic reionization. But, the process is deeply shrouded in darkness. It has been under debate what kind of objects caused the reionization.

"We expected that the light from ionized oxygen is strong enough to be observed, even 13 billion light-years away," explained Hiroshi Matsuo at the NAOJ, "because the Japanese infrared astronomy satellite AKARI has found that this emission is very bright in the Large Magellanic Cloud, which has an environment similar to the ."

A color composite image of a portion of the Subaru XMM-Newton Deep Survey Field. The red galaxy at the center of the image is the most distant galaxy, SXDF-NB1006-2. Credit: NAOJ

Nevertheless, the detection of light from ionized oxygen in very distant galaxies was a new challenge for ALMA. To secure the competitive observation time with ALMA, the researchers first performed large-scale computer simulations of the cosmic evolution to predict the emission brightness. "The simulation showed that the light should be particularly bright and easily detected with ALMA," said Ikkoh Shimizu at Osaka University, the main contributor to this simulation.

High sensitivity observations with ALMA were performed in June 2015 and the light from ionized oxygen in SXDF-NB1006-2 was definitively detected. This is the most distant detection of oxygen ever achieved and is firm evidence of oxygen in the very early Universe, only 700 million years after the Big Bang. The team estimated that the abundance of oxygen in SXDF-NB1006-2 is ten times smaller than that observed in the Sun.

"The small abundance is expected because the Universe was still young and had a short history of star formation at that time," commented Naoki Yoshida at the University of Tokyo. "In fact, our simulation predicted an abundance ten times smaller than the Sun. But we have another, unexpected, result: a very small amount of dust."

The ionizing sources are located in the center of the simulation box and the ionized region (shown in yellow) expands as time passes (5 million years from the start to the end of the simulation). The size of the simulation box is 50 thousand light-years. Credit: S. Chon (University of Tokyo)

The observations show that the amount of heavy elements is about 10% of that found in the present Universe, but the amount of dust, which is made from , seems to be much smaller. The team was also unable to detect any emissions from carbon in the galaxy. "Something unusual may be happening in this galaxy," said Inoue. "I suspect that almost all the gas is highly ionized."

The emission from ionized oxygen indicates that a number of giant stars, several dozen times heavier than the Sun, have formed in the galaxy and are emitting intense ultraviolet light. The deficits of dust and carbon in the galaxy are crucially important for cosmic reionization to occur. They enable the intense ionizing light to escape from the galaxy and ionize vast amounts of gas outside the galaxy. "SXDF-NB1006-2 would be a prototype of the light sources responsible for the cosmic reionization," said Inoue.

This diagram depicts the major milestones in the evolution of the Universe since the Big Bang, about 13.8 billion years ago. It is not to scale. The Universe was in a neutral state at 400 thousand years after the Big Bang and remained that way until light from the first generation of stars started to ionize the hydrogen. After several hundred million years, the gas in the Universe was completely ionized. Credit: NAOJ

"This is the first step to understanding what kind of objects caused cosmic reionization," explained Yoichi Tamura at the University of Tokyo. "Our next observations with ALMA have already started. Higher resolution observations will allow us to see the distribution and motion of ionized oxygen in the galaxy and provide precious information to understand the properties of the galaxy."

Explore further: ALMA reveals constituent of a galaxy at 12.4 billion light-years away

More information: "Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch," Science, DOI: 10.1126/science.aaf0714

Related Stories

Faintest early-universe galaxy ever, detected and confirmed

May 19, 2016

An international team of scientists has detected and confirmed the faintest early-Universe galaxy ever using the W. M. Keck Observatory on the summit on Maunakea, Hawaii. In addition to using the world's most powerful telescope, ...

Astronomers detect the farthest galaxy yet with Keck telescope

September 4, 2015

A team of Caltech researchers that has spent years searching for the earliest objects in the universe now reports the detection of what may be the most distant galaxy ever found. In an article published August 28, 2015 in Astrophysical ...

Mysterious infrared light from space resolved perfectly

March 10, 2016

A research team using the Atacama Large Millimeter/submillimeter Array (ALMA) has detected the faintest millimeter-wave source ever observed. By accumulating millimeter-waves from faint objects like this throughout the Universe, ...

Recommended for you

Magnetized inflow accreting to center of Milky Way galaxy

August 17, 2018

Are magnetic fields an important guiding force for gas accreting to a supermassive black hole (SMBH) like the one that our Milky Way galaxy hosts? The role of magnetic fields in gas accretion is little understood, and trying ...

First science with ALMA's highest-frequency capabilities

August 17, 2018

The ALMA telescope in Chile has transformed how we see the universe, showing us otherwise invisible parts of the cosmos. This array of incredibly precise antennas studies a comparatively high-frequency sliver of radio light: ...

Another way for stellar-mass black holes to grow larger

August 17, 2018

A trio of researchers with The University of Hong Kong, Academia Sinica Institute of Astronomy and Astrophysics in Taiwan and Northwestern University in the U.S., has come up with an alternative theory to explain how some ...

Six things about Opportunity's recovery efforts

August 17, 2018

NASA's Opportunity rover has been silent since June 10, when a planet-encircling dust storm cut off solar power for the nearly-15-year-old rover. Now that scientists think the global dust storm is "decaying"—meaning more ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tuxford
1 / 5 (5) Jun 16, 2016
"Studying heavy elements also gives us a hint to understand how the galaxies were formed and what caused the cosmic reionization," added Inoue.


As if they really have a clue. Merger mania forever. Big Bang is their mantra.
Da Schneib
5 / 5 (3) Jun 16, 2016
Pretty interesting and quite a good constraint on galaxy formation models and models of the reionization epoch. There being enough oxygen around to see that soon after the BB indicates that very early stars formed at a pretty high rate and were large enough to undergo a fair number of supernova events quite early. Nice confirmation of the cause of reionization, too.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.