NASA launches 5-year tech demo to improve air traffic flow at airports

NASA launches 5-year tech demo to improve air traffic flow at airports
Improved scheduling enables efficient spacing for aircraft to merge into air traffic. Credit: NASA

NASA is working toward a greener future in aviation, where airplanes push back from the gate, taxi to the runway and take off much quicker. A more efficient, precise trip by an airplane from the gate to takeoff reduces the amount of time its jet engines spend running on the ground, reduces noise and emissions levels at the airport, and reduces the time you spend sitting and waiting to take off.

Before this future can be realized, the tools used today to manage arrivals and departures need to be upgraded. In this Next Generation Air Transportation System (NextGen) world, computers will streamline the sharing of information between everybody involved in arrivals and departures – controllers, managers, flight crews – so that an airplane's movements through every point of its flight are more precisely coordinated. Especially at the world's busiest airports, sharing information between the systems used to monitor an airplane's flight will be key for more dependable and efficient air travel.

To support the transition to a NextGen approach, NASA is launching a five-year Airspace Technology Demonstration-2 (ATD-2) research and field test effort in coordination with the Federal Aviation Administration (FAA), technology companies, and other aviation community partners such as Charlotte Douglas International Airport in North Carolina, American Airlines and members of the National Air Traffic Controllers Association.

"We are excited to show how sharing information between air traffic management systems can benefit airports, airlines and passengers," said Leighton Quon, project manager for NASA's Airspace Technology Demonstrations project, which is run out of NASA's Ames Research center in California's Silicon Valley. "Shared information leads to more accurate planning so we can create a clearer picture to streamline all airport and airline operations."

At most airports today, departures are managed on a first-come, first-served basis. Air traffic controllers use two-way radio voice communications to relay information to pilots. These conversations are not shared between multiple users or among the numerous computer-based systems that hold information about different segments of each flight, such as available gates, queues for takeoff, entering the airport's airspace and more. This can overload runways, causing excessive taxi and hold times.

Technologies that will be tested during ATD-2 will explore how to best use information to better plan and schedule aircraft movement. ATD-2 technologies will connect the people involved in orchestrating the different segments of a flight, and coordinate that flight's schedules at the ramp, tower, terminal and center control facilities. The ATD-2 computer-driven scheduling tools will help traffic managers make better decisions about how to reduce congestion during the busiest times at airports and improve departure times.

ATD-2 is getting underway at a new research laboratory at Charlotte Airport. The airport's proximity to other East Coast airports contributes to a "metroplex" type of operation. A metroplex includes one or more commercial airports with shared airspace that serves at least one major city. Charlotte Airport shares airspace with Atlanta's Hartsfield-Jackson Airport and with Washington, D.C.

American Airlines is the dominant carrier at Charlotte Airport and will be a valuable partner in the ATD-2 testing.

ATD-2 testing will be conducted in three phases during the next five years.

  • Phase One: Baseline integrated arrival, departure and surface system demonstration, including FAA's Surface Collaborative Decision Making concept, at Charlotte and Washington, D.C.'s air traffic control center. Begins September 2017 and evaluations run throughout 2018.
  • Phase Two: An expanded demonstration including scheduling scenarios that add Atlanta's air traffic control center, and a more complete fusion of NASA and FAA technologies. Begins September 2018 and evaluations run throughout 2019.
  • Phase Three – Continues field demonstration at Charlotte, Washington and Atlanta air traffic control centers, and begins testing of the Metroplex Coordinator in the Dallas-Fort Worth airport, terminal control and center environment as a simulation or field test. The Metroplex Coordinator is the system used to coordinate departures from multiple metropolitan area airports competing for the same constrained airspace. Begins September 2019 and evaluation run throughout 2020.

"Solving the problem at a single airport is not enough. An integrated system that coordinates all the players is needed, and the Metroplex Coordinator does this," said Quon. "It will be like the symphony conductor making sure all the various instruments, who know how to play their part, come together to perform the full composition."

NASA expects results from each ATD-2 phase to inform the next. A NASA-FAA Research Transition Team will review findings from each phase; some initial changes to operations at the test sites could be implemented along the way, resulting in some early benefits from this work.

Provided by NASA

Citation: NASA launches 5-year tech demo to improve air traffic flow at airports (2016, June 24) retrieved 18 March 2024 from https://phys.org/news/2016-06-nasa-year-tech-demo-air.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

NASA-developed air traffic management tool deployed

17 shares

Feedback to editors