Laser uranium enrichment technology may create new proliferation risks

June 27, 2016

A new laser-based uranium enrichment technology may provide a hard-to-detect pathway to nuclear weapons production, according to a forthcoming paper in the journal Science & Global Security by Ryan Snyder, a physicist with Princeton University's Program on Science and Global Security.

One example of this new third-generation laser enrichment technique may be the separation of isotopes by laser excitation (SILEX) process which was originally developed in Australia and licensed in 2012 for commercial-scale deployment in the United States to the Global Laser Enrichment consortium led by General Electric-Hitachi. Research on the relevant laser systems is also currently ongoing in Russia, India and China.

The paper explains the basic physics of the new uranium separation concept, which relies on the selective laser excitation and condensation repression of uranium-235 in a gas. It also estimates the key laser performance requirements and possible operating parameters for a single enrichment unit and how a cascade of such units could be arranged into an enrichment plant able to produce weapon-grade highly enriched uranium.

Using plausible assumptions, the paper shows how a covert laser enrichment plant sized to make one bomb's worth of weapon-grade material a year could use less space and energy than a similar scale plant based on almost all current centrifuge designs, the most efficient enrichment technology in use today. The results suggest a direct impact on detection methods that use size or energy use as plant footprints.

Acquiring the key laser systems appears to be the main technological hurdle to states mastering this new enrichment process. The paper details some of the different lasers that, in principle, could be used for uranium enrichment. Technology export controls on possible laser systems may be hard to implement since some of the lasers have multiple applications in areas such as medicine, telecommunications, and defense. One consequence of this is that commonplace laser research and development activities could allow more countries a latent nuclear weapons capability.

Snyder observes that an unexpected window of opportunity to think more carefully about the proliferation potential of the new laser technology has opened up with the April 2016 decision by General Electric-Hitachi to withdraw from the Global Laser Enrichment consortium which has stalled the commercialization effort.

"We have a second chance to think about the risks of deploying new laser-based technologies on a laboratory or industrial scale," said Snyder. "Previously developed technologies that provided pathways to nuclear weapons such as gaseous diffusion and gas centrifuges have spread to other countries, and the same should be expected with laser enrichment if commercial deployment of this new technology is successfully demonstrated."

The paper concludes with the suggestion that attention should be focused on regulating systems capable of enriching uranium to weapon-grade levels, otherwise such lasers may come to pose proliferation concerns comparable to if not greater than gas centrifuge development or plutonium reprocessing today.

The paper, "A Proliferation Assessment of Third Generation Laser Enrichment Technology," will be published in Science & Global Security.

Explore further: US panel approves uranium enrichment plant (Update)

Related Stories

US panel approves uranium enrichment plant (Update)

September 25, 2012

(AP)—A nuclear power partnership of General Electric Co. and Tokyo-based Hitachi Ltd. received federal approval Tuesday to build the first plant to enrich uranium for use in commercial reactors using a classified laser ...

GE uranium enrichment plans raise fears: report

August 22, 2011

US conglomerate General Electric is seeking permission to build a $1 billion plant for uranium enrichment by laser, a process which has raised proliferation fears, The New York Times said Sunday.

Nixing new nuclear process

April 20, 2010

(PhysOrg.com) -- Risks of laser-based uranium enrichment outweigh rewards, says UCI economist Linda Cohen.

Recommended for you

Quantum data takes a ride on sound waves

September 22, 2017

Yale scientists have created a simple-to-produce device that uses sound waves to store quantum information and convert it from one form to another, all inside a single, integrated chip.

A way to measure and control phonons

September 22, 2017

(Phys.org)—A team of researchers with the University of Vienna in Austria and Delft University of Technology in the Netherlands has developed a technique using photons for controlling and measuring phonons. In their paper ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rrrander
not rated yet Jun 28, 2016
It's unfortunate that regulation is slowly killing scientific innovation. Since 9/11 there has been a clamp-down on hundreds of products, chemicals, scientific devices so that only large companies or institutions can get access to them. Innovation has never existed in an environment of zero risk.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.