Kepler-1647b: New planet is largest discovered that orbits two suns

June 13, 2016, San Diego State University
Artist's impression of the simultaneous stellar eclipse and planetary transit events on Kepler-1647 b. Such a double eclipse event is known as a syzygy. Credit: Figure credit: Lynette Cook

If you cast your eyes toward the constellation Cygnus, you'll be looking in the direction of the largest planet yet discovered around a double-star system. It's too faint to see with the naked eye, but a team led by astronomers from NASA's Goddard Space Flight Center and San Diego State University used the Kepler Space Telescope to identify the new planet, Kepler-1647b. The discovery was announced today in San Diego, at a meeting of the American Astronomical Society.

Planets that orbit two stars are called circumbinary planets, or sometimes "Tatooine" planets, after Luke Skywalker's homeland in "Star Wars." Using NASA's Kepler telescope, astronomers look for slight dips in brightness that hint a planet might be transiting in front of a star, blocking some of the star's light.

"But finding circumbinary planets is much harder than finding planets around single stars," said SDSU astronomer William Welsh, one of the paper's coauthors. "The transits are not regularly spaced in time and they can vary in duration and even depth."

Once a candidate planet is found, researchers employ advanced computer programs to determine if it really is a planet. It can be a grueling process. Laurance Doyle, a coauthor on the paper and astronomer at the SETI Institute, noticed a transit back in 2011. But more data and several years of analysis were needed to confirm the transit was indeed caused by a circumbinary planet. A network of amateur astronomers in the KELT Follow-Up Network provided additional observations that helped the researchers estimate the planet's mass. The research has been accepted for publication in the Astrophysical Journal with Veselin Kostov, a NASA Goddard postdoctoral fellow, as lead author.

Comparison of the relative sizes of several Kepler circumbinary planets, from the smallest, Kepler-47 b, to the largest, Kepler-1647 b. Kepler-1647 b is substantially larger than any of the previously known circumbinary planets. Credit: Lynette Cook

Kepler-1647 b is 3,700 light-years away and approximately 4.4 billion years old, roughly the same age as the Earth. The stars are similar to the Sun, with one slightly larger than our home star and the other slightly smaller. The planet has a mass and radius nearly identical to that of Jupiter, making it the largest transiting circumbinary planet ever found.

"It's a bit curious that this biggest planet took so long to confirm, since it is easier to find big planets than small ones," said SDSU astronomer Jerome Orosz, another coauthor on the study. "It took so long to confirm because its orbital period is so long."

The planet takes 1,107 days (just over 3 years) to orbit its host stars, the longest period of any confirmed transiting exoplanet found so far. The planet is also much further away from its than any other circumbinary planet, breaking with the tendency for circumbinary planets to have close-in orbits. Interestingly, its orbit puts the planet within the so-called habitable zone. Like Jupiter, however, Kepler-1647 b is a gas giant, making the planet unlikely to host life. Yet if the planet has large moons, they could potentially be suitable for life.

"Habitability aside, Kepler-1647 b is important because it is the tip of the iceberg of a theoretically predicted population of large, long-period circumbinary ," Welsh said.

A standalone version of the artistic impression of the planet Kepler-1647 b. Given that the planet is nearly identical to Jupiter in both size and mass, the planet is expected to be roughly similar in appearance. But it is much warmer -- Kepler-1647 b is in the habitable zone. Credit: Lynette Cook

Explore further: Astronomers discover a tenth transiting "Tatooine"

More information: Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet, arXiv:1512.00189 [astro-ph.EP] arxiv.org/abs/1512.00189v2

Related Stories

Astronomers discover a tenth transiting "Tatooine"

August 7, 2015

Astronomers at the 29th International Astronomical Union General Assembly will announce on August 14 the discovery of a new transiting "circumbinary" planet, bringing the number of such known planets into double digits. A ...

Astronomy student discovers four new planets

May 31, 2016

Michelle Kunimoto's bachelor degree in physics and astronomy sent her on a journey out of this world—and led to the discovery of four new worlds beyond our solar system.

Theft behind Planet 9 in our solar system

May 31, 2016

Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet. This would make it the first exoplanet to be discovered inside our own ...

Recommended for you

Scientist explores a better way to predict space weather

October 22, 2018

Findings recently published by a Southwest Research Institute (SwRI) space scientist shed new light on predicting the thermodynamics of solar flares and other "space weather" events involving hot, fast-moving plasmas.

Gravitational waves could shed light on dark matter

October 22, 2018

The forthcoming Laser Interferometer Space Antenna (LISA) will be a huge instrument allowing astronomers to study phenomena including black holes colliding and gravitational waves moving through space-time. Researchers from ...

Astronomers propose a new method for detecting black holes

October 22, 2018

A stellar mass black hole is a compact object with a mass greater than three solar masses. It is so dense and has such a powerful force of attraction that not even light can escape from it. They cannot be observed directly, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.