Ending a century of intrigue around 'membraneless' cell compartments

June 13, 2016 by Stuart Gillespie, Oxford Science Blog
Credit: Oxford Science Blog

We've been able to see them for over a hundred years, but only now are scientists beginning to get to the bottom of what's happening inside membraneless organelles – compartments within cells that really do have no boundaries.

Most people will be broadly familiar with cellular structures such as the nucleus or mitochondria. These compartments, or organelles, are bounded by biological membranes to separate them from the rest of the cell. But, as the name suggests, the droplets of liquid protein known as membraneless organelles have no such physical border, making them an intriguing subject for scientists keen to make use of the advanced fluorescence microscopy techniques that have opened up their inner workings in the past five years.

And now, an Oxford University-led study published in the journal Nature Chemistry has shed new light on the phenomenon, demonstrating that even stable structures such as the DNA double helix can be altered, or 'melted', inside these droplets. That's in addition to their ability to separate molecules such as proteins that reside within the organelles.

The work also has huge commercial potential, with Oxford's technology transfer company having filed a patent on a technique that could lead to a revolutionary platform for purifying biomolecules in life sciences research.

First author Dr Timothy Nott of Oxford's Department of Chemistry says: 'The premise of our work has been trying to understand how cells are internally compartmentalised. Broadly speaking, there are two ways of creating compartments in cells: one using membranes, which produces things like the nucleus or mitochondria, and another without membranes.

'These membraneless organelles were first observed at the turn of the last century, when experiments involving sea urchin eggs being "squashed" produced globules of liquid that fused together and behaved like an emulsion.

'In the past five years, scientists have realised that advanced fluorescence microscopy techniques can be used to carry out rapid with the aim of interrogating the physical behaviour of these droplets in cells. So only recently have we developed the toolkit necessary to analyse what's going on.'

While there are different classes of membraneless organelles within cells, they all share the common feature of this lack of a delimiting boundary. As well as being tiny and spherical, they also have the viscosity of honey and have been likened to globules of oil in vinegar.

Dr Nott says: 'These unusual properties make membraneless organelles difficult to study. You can't just purify them from within the cell and expect them to behave the same way on the outside.

'What we've been doing is trying to reconstitute them in the lab, controlling when and how they form and performing a wide range of experiments on them.'

The team has been able to identify the main protein components of membraneless organelles – they are made up of long protein chains that 'behave like spaghetti' – which can then be targeted and purified in the lab.

Professor Andrew Baldwin, group leader in Oxford's Department of Chemistry, adds: 'Francis Crick used to say that if you want to study function, study structure. But what we find with membraneless is that while they don't really have a structure, they have plenty of functions.'

Oxford University's technology transfer company is keen to hear from parties interested in developing this innovative technology (enquires@innovation.ox.ac.uk).

Explore further: Simple physical mechanism for assembly and disassembly of structures inside cells

More information: Timothy J. Nott et al. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters, Nature Chemistry (2016). DOI: 10.1038/nchem.2519

Related Stories

How to organize a cell: Novel insight from a fungus

June 2, 2016

University of Exeter researchers have found novel insight into the ways cells organise themselves. Their work, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and published this week in Nature ...

First plastic cell with working organelle

January 15, 2014

For the first time, chemists have successfully produced an artificial cell containing organelles capable of carrying out the various steps of a chemical reaction. This was done at the Institute for Molecules and Materials ...

How plant cell compartments change with cell growth

August 22, 2014

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of subcellular organelles ...

Recommended for you

Efficient catalyst developed for producing pronucleotides

April 28, 2017

(Phys.org)—A team of researchers with Merck & Co., Inc. has developed an efficient catalyst for producing pronucleotides, paving the way perhaps to a new class of drugs for combatting viruses and cancer. In their paper ...

Tick protein helps antibiotics combat MRSA super bug

April 27, 2017

A protein derived from ticks enhances the effectiveness of antibiotic treatment for methicillin-resistant Staphylococcus aureus, or MRSA, according to a Yale-led study. The strategy of using the protein in combination with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.