Underwater grass beds have ability to protect and maintain their own health

May 27, 2016, University of Maryland Center for Environmental Science
An expansive bed of underwater grass at the mouth of the Susquehanna River has proven it is able to 'take a licking and keep on ticking.' A recent study has found that the submersed aquatic vegetation bed at Susquehanna Flats, which only recently made a comeback in the Chesapeake Bay, was not only able to survive a barrage of rough storms and flooding, but it has proven a natural ability to protect and maintain itself. Credit: University of Maryland Center for Environmental Science

An expansive bed of underwater grass at the mouth of the Susquehanna River has proven it is able to "take a licking and keep on ticking." A recent study has found that the submersed aquatic vegetation (SAV) bed at Susquehanna Flats, which only recently made a comeback in the Chesapeake Bay, was not only able to survive a barrage of rough storms and flooding, but it has proven a natural ability to protect and maintain itself.

"It's proof that restored SAV beds have the capability to be resilient," said study author Cassie Gurbisz of the University of Maryland Center for Environmental Science's Horn Point Laboratory. "They can stick around for a while if you give them the right conditions."

Some 40 years ago, Tropical Storm Agnes wiped out the Susquehanna Flats SAV bed, which had already been weakened by decades of nutrient pollution. In recent years, however, the bed made an incredible comeback, and today it is one of the biggest and healthiest in the Bay, spanning some 20 square miles.

It has been projected that climate change will bring increases in the frequency and intensity of extreme storm events, which leads to the question of whether or not these ecosystems can withstand or rebound from such events. Scientists studied how the bed at Susquehanna Flats responded to the one-two punch of major storms in 2011 (Hurricane Irene and the remnants of Tropical Storm Lee) to find how resilient the underwater grasses are in the upper Chesapeake.

Sea grasses are essential to the Bay ecosystem. They pull harmful nutrients out of the water, cause sediments to settle to the bottom so sunlight can reach plants, protect the shoreline by reducing the impact of waves and currents, and provide habitat and food for a host of important organisms, including baby crabs.

The team of scientists looked at time series datasets to explore how extreme events impacted the Susquehanna Flats and to understand the factors that drove loss and resilience in this large, dense and continuous meadow of grasses. They found that the storms in 2011 did some damage to the bed at Susquehanna Flats because the rush of the water from the Susquehanna River tore up plants around the edge of the bed and deposited sediment that blocked the sunlight, limiting photosynthesis.

However, the bed was able to reduce the force of high flows sufficiently to prevent plant erosion at its inner core. In addition, although the floodwaters dumped a lot of sediment onto the SAV bed, it also dampened the waves driven by the winds. This decreased the amount of sediment that was later churned up and, as a result, increased . In fact, clear water spilled over into adjacent regions during ebb tide, further improving the bed's capacity for renewal by creating more favorable growing conditions in areas where plant loss had occurred.

"Although there was substantial SAV loss in response to a major flood event, the system was also remarkably resilient, apparently owing to strong biophysical feedback processes carried out by a large, dense, healthy SAV bed," said Gurbisz.

It's called a positive feedback process. The plant beds alter physical conditions in ways that enhance their own growth - and it may help plant beds absorb the harmful impacts of storms. For instance, the plants create clear water in the middle of the bed, which promotes more plant growth, further improving water clarity, and so on. When that clear water spills out of the plant bed into the surrounding water, more light is available for new plants to grow. Together, these processes create conditions that allow the bed to resist damage and recover more quickly from the rush of water and sediments from storms.

"The SAV bed modifies its environment in ways that improve its own growth and likely serve as mechanisms of SAV resilience to flood events," said Gurbisz.

Explore further: Underwater grass comeback bodes well for Chesapeake Bay

More information: Cassie Gurbisz et al, Mechanisms of Storm-Related Loss and Resilience in a Large Submersed Plant Bed, Estuaries and Coasts (2016). DOI: 10.1007/s12237-016-0074-4

Related Stories

Underwater grass comeback bodes well for Chesapeake Bay

September 2, 2014

The Susquehanna Flats, a large bed of underwater grasses near the mouth of the Susquehanna River, virtually disappeared from the upper Chesapeake Bay after Tropical Storm Agnes more than 40 years ago. However, the grasses ...

Bay's underwater grasses decline for third year

April 26, 2013

(Phys.org) —An annual aerial survey led by researchers at the Virginia Institute of Marine Science shows that the abundance of underwater grasses in Chesapeake Bay and its tidal rivers declined 24% between 2011 and 2012, ...

Predicting sediment flow in coastal vegetation

June 16, 2015

Seagrass, kelp beds, mangroves, and other aquatic vegetation are often considered "ecosystem engineers" for their ability to essentially create their own habitats: Aquatic leaves and reeds slow the flow of water, encouraging ...

Thick-skinned bed bugs beat commonly used bug sprays

April 13, 2016

The global resurgence in bed bugs over the past two decades could be explained by revelations that bed bugs have developed a thicker cuticle that enables them to survive exposure to commonly used insecticides, according to ...

Recommended for you

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

Turn off a light, save a life, says new study

March 20, 2019

We all know that turning off lights and buying energy-efficient appliances affects our financial bottom line. Now, according to a new study by University of Wisconsin-Madison researchers, we know that saving energy also saves ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.