Precisely flawed nanodiamonds could produce next-generation tools for imaging and communications

May 12, 2016 by Glennda Chui, Stanford University
Close-up of purified diamondoids on a lab bench. Too small to see with the naked eye, diamondoids are visible only when they clump together in fine, sugar-like crystals like these.

Stanford and SLAC National Accelerator Laboratory jointly run the world's leading program for isolating and studying diamondoids—the tiniest possible specks of diamond. Found naturally in petroleum fluids, these interlocking carbon cages weigh less than a billionth of a billionth of a carat (a carat weighs about the same as 12 grains of rice); the smallest ones contain just 10 atoms.

Over the past decade, a team led by two Stanford-SLAC faculty members—Nick Melosh, an associate professor of materials science and engineering and of photon science, and Zhi-Xun Shen, a professor of photon science and of physics and applied physics – has found potential roles for in improving , assembling materials and printing circuits on computer chips. The team's work takes place within SIMES, the Stanford Institute for Materials and Energy Sciences, which is run jointly with SLAC.

Before they can do that, though, just getting the diamondoids is a technical feat. It starts at the nearby Chevron refinery in Richmond, California, with a railroad tank car full of crude oil from the Gulf of Mexico. "We analyzed more than a thousand oils from around the world to see which had the highest concentrations of diamondoids," says Jeremy Dahl, who developed key diamondoid isolation techniques with fellow Chevron researcher Robert Carlson before both came to Stanford—Dahl as a physical science research associate and Carlson as a visiting scientist.

Solutions containing diamondoids await purity analysis in a SLAC lab. Credit: Christopher Smith, SLAC National Accelerator Laboratory

The original isolation steps were carried out at the Chevron refinery, where the selected crudes were boiled in huge pots to concentrate the diamondoids. Some of the residue from that work came to a SLAC lab, where small batches are repeatedly boiled to evaporate and isolate molecules of specific weights. These fluids are then forced at high pressure through sophisticated filtration systems to separate out diamondoids of different sizes and shapes, each of which has different properties.

The diamondoids themselves are invisible to the eye; the only reason we can see them is that they clump together in fine, sugar-like crystals. "If you had a spoonful," Dahl says, holding a few in his palm, "you could give 100 billion of them to every person on Earth and still have some left over."

Recently, the team started using diamondoids to seed the growth of flawless, nano-sized diamonds in a lab at Stanford. By introducing other elements, such as silicon or nickel, during the growing process, they hope to make nanodiamonds with precisely tailored flaws that can produce single photons of light for next-generation optical communications and biological imaging.

Jeremy Dahl holds clumps of diamondoid crystals. Credit: Christopher Smith, SLAC National Accelerator Laboratory

Early results show that the quality of optical materials grown from diamondoid seeds is consistently high, says Stanford's Jelena Vuckovic, a professor of electrical engineering who is leading this part of the research with Steven Chu, professor of physics and of molecular and cellular physiology.

"Developing a reliable way of growing the nanodiamonds is critical," says Vuckovic, who is also a member of Stanford Bio-X. "And it's really great to have that source and the grower right here at Stanford. Our collaborators grow the material, we characterize it and we give them feedback right away. They can change whatever we want them to change."

Nano-scale diamondoid crystals, seen above, are derived from petroleum. They have potential for applications in energy, electronics, and molecular imaging. Credit: Nick Melosh

Explore further: Scientists discover that a single layer of tiny diamonds increases electron emission 13,000-fold

Related Stories

Diamond-like coating improves electron microscope images

November 30, 2012

(Phys.org)—Coating the surface of a material with a single layer of diamond-like crystals greatly improves images of it taken with an electron microscope, according to a study led by scientists at SLAC National Accelerator ...

Recommended for you

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

Researchers make coldest quantum gas of molecules

February 21, 2019

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JRi
5 / 5 (1) May 12, 2016
I believe they are talking about organic gage structures such as adamantane (C10H16) and diamantane (C14H20) which are known to block oil pipes by crystallization for decades. They are about as far away from real diamonds as methane is from graphene. I don't quite get it why the article tries to claim diamondoids ~ nano diamonds between the lines. Yes, they did use these compounds to seed diamond growth, but the photos below the article are not from those diamonds, but the the seeding material itself. And what is actually the smallest diamondoid of 10 atoms they claim? Even adamantane has 26 atoms.

Since there are no references to any articles, this article looks more or less just like an advertise for their research program.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.