Ground-breaking images of nearby star give new insight into Sun's infancy

May 4, 2016, University of Exeter
Diagram of Andromeda constellation. Credit: Wikipedia

Pioneering new research that has provided close-up pictures of a nearby star has given a fascinating insight into how the Sun may have behaved billions of years ago.

A team of international astronomers, including Professor Stefan Kraus from the University of Exeter, have used cutting-edge techniques to create the first direct image of surface structures on the star Zeta Andromedae - found 181 light years from Earth.

In order to image the star's surface during one of its 18-day rotations, the researchers used a method called interferometry, where the light of physically separate telescopes is combined in order to create the resolving power of a 330m telescope.

They discovered the star, which is found in the northern constellation of Andromeda, showed signs of 'starspots' - the equivalent of sunspots found within our own solar system. The pattern of these spots differs significantly from those found on the Sun.

The researchers suggest these results challenge current understandings of how magnetic fields of influence their evolution. Furthermore, they believe that the findings offer a rare glimpse of how the Sun behaved in its infancy, while the solar system was first forming.

The findings are published in leading scientific journal Nature on May 4.

On our star, the Sun, the sunspots are seen in a belt around the equator. Sunspots are cool areas caused by the strong magnetic fields where the flow of heat is slowed. Credit: NASA

Professor Kraus, an Associate Professor in Astrophysics at the University of Exeter said: "Most stars behave like giant rotating magnets and starspots are the visible manifestation of this magnetic activity. Imaging these structures can help us to decipher the workings that take place deep below the stellar surface."

Sunspots and starspots are cooler, darker areas of a star's outer shell that form when stronger regions of the block the flow of heat and energy in patches. However, while on the Sun spots only form in bands just above and below its equator, the team found something quite different on Zeta Andromedae.

Sunspots occur in pairs with opposite magnetic polarity. This can be illustrated as a large horseshoe-shaped magnet below the surface of the star. Credit: NASA

As well as one starspot in the star's northern polar region, there were also several additional spots that spread across lower latitudes. The images shows, for the first time, that stars with could have spots near their pole.

"While imaging sunspots was one of the first things that Galileo did when he started using the newly invented telescope, it has taken more than 400 years for us to make a powerful enough telescope that can image spots on stars beyond the Sun," said John Monnier, professor of astronomy in the University of Michigan's College of Literature, Science and the Arts.

"It's important to understand the Sun's history because that dictates the Earth's history—its formation and the development of life," said Rachael Roettenbacher, a postdoctoral researcher in astronomy who conducted this research as part of her doctoral thesis at the University of Michigan. "The better we can constrain the conditions of the solar environment when life formed, the better we can understand the requirements necessary for the formation of life."

Zeta Andromeda has a large sunspot at its north pole. The south pole cannot be seen, but you can see sunspots at latitudes near the poles and these sunspots are not there at the same time, they are seen alternately on the northern and southern hemispheres. They appear and disappear again with an asymmetrical distribution on the surface of the star. Credit: Roettenbacher et al.
"Our images unambiguously show polar starspots on Zeta Andromedae for the first time. Now we can see that the spots aren't restricted to forming only in symmetric bands around the equator as sunspots are. We see the starspots in both hemispheres and at all different latitudes. This can't be explained by extrapolating theories about the Sun's magnetic field."

And the additional, lower latitude spots are spread over such an extended cool region that the scientists say they've found evidence that magnetic fields can suppress heat flow across a large part of the star's surface, rather than just in spots. Astronomers use star temperatures to estimate their ages, so they need to know if anything, such as these extended cool regions, is throwing off those temperature measurements.

Explore further: Image: Picturing the sun's magnetic field

More information: [9] No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry, Nature, nature.com/articles/doi:10.1038/nature17444

Related Stories

Image: Picturing the sun's magnetic field

March 16, 2016

This illustration lays a depiction of the sun's magnetic fields over an image captured by NASA's Solar Dynamics Observatory on March 12, 2016. The complex overlay of lines can teach scientists about the ways the sun's magnetism ...

A stunning image of our home star

July 15, 2014

Active regions 2108 and 2109 are now passing around the limb of the Sun, but not before solar photography specialist Alan Friedman grabbed a few pictures of them on Friday!   The image above, captured by Alan from his location ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Solon
5 / 5 (1) May 04, 2016
What about looking at the closest stars to our own, should get a much clearer view.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.