Ferrous chemistry in aqueous solution unravelled

May 11, 2016, Helmholtz Association of German Research Centres
Combining the results from radiative and non-radiative relaxation processes enabled a complete picture of the filled and unfilled energy levels to be obtained. Credit: HZB/R. Golnak

An HZB team has combined two different analytical methods at the BESSY II synchrotron source in order to extract more information about the chemistry of transition-metal compounds in solution. These kinds of compounds can act as catalysts to promote desirable reactions in energy materials, but their behavior has not been completely understood thus far.

The team demonstrated how a detailed picture of the can be ascertained by systematically comparing all of the interactive electronic processes in a simple system of aqueous iron(II). The results have now been published in Scientific Reports, the open access journal from Nature Group publishing.

If a blindman feels the leg of an elephant, he can conclude something about the animal. And perhaps the conclusion would be that an elephant is constructed like a column. That is not incorrect, but not the whole story either. So it is with measurement techniques: they show a particular aspect very well, yet others not at all. Now an HZB Institute of Methods for Material Development team headed by Professor Emad Aziz has succeeded in combining two different methods in such a way that a practically complete picture of the electronic states and interactions of a molecule in an aqueous solution results.

Simple model system

The hexaaqua(II) cation [Fe(H2O)6]2+ served as the model. It consists of a central iron atom with six water molecules arranged symmetrically about it and is well-understood. A group of theorists headed by Oliver Kühn from the University of Rostock was able to calculate the electronic states and the possible excitations for this system in advance so that the predictions could be comprehensively tested against the empirical data.

Exploring the L-edge with two methods

"The primary soft X-ray emissions generated at BESSY II were perfectly suited for investigating the L-edge, as it is known", explains Ronny Golnak, who carried out the experiments during the course of his doctoral studies. The L-edge denotes the energy region where the important electronic states lie for transition metals like iron: from the electrons in the 1s and 2p shells near the nucleus to the valence electrons in the 3d shells. Electrons from the 2p shells are briefly excited to higher states with the help of X-ray pulses. These excited states can decay via two different pathways: either by emitting light (radiative relaxation) that can be analysed with X-ray fluorescence spectroscopy (XRF), or instead by emitting electrons (non-radiative relaxation) that can be measured with photo-electron spectroscopy as a result of the Auger effect (AES). Applying these methods of analysis to liquid samples or samples in solution has only become feasible the last few years thanks to development of microjet technology.

Combining the results

The interaction between the relaxation channels of excited 3d-valence orbitals in iron and its more strongly bound 3p and 3s orbitals has now been analysed for the hexaaqua complex. Combining the results from the radiative and non-radiative relaxation processes enabled a complete picture of the filled and unfilled energy levels to be obtained.

New insights into catalysts and energy materials

"Our results are important for interpreting X-ray spectra and improve our understanding of electron interactions between complexes in solution and the surrounding solvent for catalytic and functional materials", says HZB-scientist Bernd Winter. Aziz adds: "Experts were skeptical about whether our experimental approach would work. We've now demonstrated it. Naturally, we will carry out this type of measurement on additional systems as well, particularly with catalysts that play a key role in the physical chemistry of , as well as in biological processes."

Explore further: Holes in valence bands of nanodiamonds discovered

More information: Ronny Golnak et al, Joint Analysis of Radiative and Non-Radiative Electronic Relaxation Upon X-ray Irradiation of Transition Metal Aqueous Solutions, Scientific Reports (2016). DOI: 10.1038/srep24659

Related Stories

Holes in valence bands of nanodiamonds discovered

January 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their surfaces play a ...

Better insight into molecular interactions

August 21, 2013

How molecules in biochemical solutions do interact, is a question of great importance for understanding processes in catalysts, functional materials and even in organisms. Until now, scientists could have a look at these ...

Aqueous iron interacts as strong as solid iron

July 6, 2012

German scientists have applied a new method -- "inverse Partial Fluorescence Yield" (iPFY) on micro-jet -- which will enable them to probe the electronic structure of liquids free of sample damages. The experiments are performed ...

Watching catalysts at work—at the atomic scale

July 25, 2013

Scientists of Helmholtz-Zentrum Berlin (HZB) and collaborators have now combined the spectroscopic method "RIXS" with so-called ab initio theory in order to describe these processes in detail for a model organometallic catalyst ...

Recommended for you

A decade on, smartphone-like software finally heads to space

March 20, 2019

Once a traditional satellite is launched into space, its physical hardware and computer software stay mostly immutable for the rest of its existence as it orbits the Earth, even as the technology it serves on the ground continues ...

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

Researchers find hidden proteins in bacteria

March 20, 2019

Scientists at the University of Illinois at Chicago have developed a way to identify the beginning of every gene—known as a translation start site or a start codon—in bacterial cell DNA with a single experiment and, through ...

Turn off a light, save a life, says new study

March 20, 2019

We all know that turning off lights and buying energy-efficient appliances affects our financial bottom line. Now, according to a new study by University of Wisconsin-Madison researchers, we know that saving energy also saves ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.