Discrete convex analysis for analysis of iterative auctions

Discrete convex analysis for analysis of iterative auctions
Figure 1. Behavior of the iterative auction algorithm

Researchers are investigating auction models where there are many different indivisible goods such as houses and cars. Notably, algorithms known as iterative auctions are often used to compute equilibrium prices of goods.

However, the theoretical behavior of iterative auction algorithms is not fully understood. In particular, there are only a few scattered results of research on the theoretical analysis for time bounds of iterative auctions to-date, even though the theoretical bounds on the number of iterations are interesting as research topics in their own right and important for practical applications.

Here, Akiyoshi Shioura at Tokyo Tech and colleagues at Tokyo Metropolitan University, and University of York, UK, describe a unified method of analysis for iterative auctions based on discrete convex analysis—a theory of discrete optimization problems. A key tool in the analysis is the concept of the Lyapunov function in auction theory. The researchers show that the Lyapunov function has a useful property called discrete convexity. By making use of this property, the team derived exact bounds on the number of iterations in terms of the distance between the initial price vector and the resulting equilibrium.

The results of this research extend and unify the iterative auction algorithms for a variety of auction models, offering computational complexity results for these algorithms, and reinforcing the connection between auction theory and discrete convex .

More information: Kazuo Murota et al. Time bounds for iterative auctions: A unified approach by discrete convex analysis, Discrete Optimization (2016). DOI: 10.1016/j.disopt.2016.01.001

Citation: Discrete convex analysis for analysis of iterative auctions (2016, May 24) retrieved 11 December 2023 from https://phys.org/news/2016-05-discrete-convex-analysis-iterative-auctions.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

How to digitally stoke that old-time auction fever


Feedback to editors